So, your coursework is worth 60% which leaves the remaining 40% for the written exam paper.

Everyone sits the SAME paper. SO it is crucial you revise thoroughly as there will be some tough questions on here. Likewise, it is important you do your best in the coursework to give yourself the best chance of getting a good grade in the summer. Remember..... We are NOT setting you up to fail. But you MUST work hard.

This guide has been written to help you prepare for your exam, but you must revise thoroughly so the paper doesn't shock or freak you out!

You should be well prepared for your exam. SO read this guide carefully, it is full of hints and tips along with the subject content you need.
If you feel it will help you, set a revision timetable, revising certain subjects at certain times.
If you feel the need for silence while revising, try to make this possible.
If you like to work to music, get some headphones and listen to your favourite album whilst you work. Try to listen to something that is familiar and “one of your favourites” - this will help to put you in a positive frame of mind during your revision - it can also reduce the risk of distraction, under the right circumstances.
Maybe listen to the same music each time you revise for that subject, your brain will start to associate that artist with the subject content. (if you can, avoid anything with a banging beat.... A 4 beat tempo is good to stabilise your heart rate whilst revising...it keeps you calmer!)
Make sure you have a break from revision - try to arrange things so that you have a “day off” revising. This will mean when you re-start your revision, you will be a little fresher.
Try to revise one section of notes, or one set of topics together.
If you have trouble with specific details of topics, at least try to understand the topic generally and try not to get too bogged down with details. If you just choose to “ignore” topics, you may be limiting your options too much when it comes to answering questions - try to gain a broad understanding, as this is often sufficient to answer most or part of a question. (Quite often, details are supplied anyway - you just have to tie them together.)

REVISION TIPS: THE APPROACH

In a nutshell.....

- Preparation in the key
- The earlier you start to revise the better
- Listen to music, nothing too heavy

Revising isn’t something that should be challenging or difficult at all. What revising is, unfortunately, is time consuming. It takes a while. That’s why you might like to start early (nothing to do on a Sunday?)....
Try to develop your own technique for revision. Different techniques work for different people and depending on the type of subject being revised, some techniques are more suitable than others. Here are some:

- Read and Memorise.
- Summary notes - short version of main notes.
- List of keywords for each topic covered, which can act as "triggers" for other ideas.
- Some kind of diagrammatic representation of notes can be helpful.
- Revise with a friend - if possible, exchange ideas during revision - this can be very helpful to both people in understanding topics and building confidence.
- Questions and Answers - get a friend to ask you specific questions about topics and think up questions to ask your friend. This will test and help to build your own understanding.
- Make up a set of revision cards - with one main topic per card, each topic listing ideas or information for this topic. You can carry these cards with you and, if you choose, get them out and revise whilst a passenger in a car or on the bus or train, or when queuing somewhere.
- If possible, ask your teacher or tutor to revise topics you are unsure about and try to get the tutor to help you to fully understand the topic.

REVISION TIPS:

TECHNIQUES

In a nutshell.....

- Revision cards work!
- Make your revision interesting to look at, add colour and highlight key elements

You hit home runs, not by chance but by preparation
Try not to treat the exam as anything other than a normal school or college day, other than that you are doing an exam.

Try to follow your normal routine as this will help you relax.

Try to think that at least after the exam, you can relax and won't have to do any further revision - this will help you relax before the event too.

Get a good night's sleep - do not stay up till "all hours" revising unless you feel this is vital. A final review of topics and a review of your "strong" and "weaker" areas would be best.

Take sufficient pens / pencil, rubber ruler etc. Try to use the same pens etc. as you would normally use in class as this too, can be a small psychological booster - just use new pens for "spares".

Take a wristwatch or small traveller's clock - make sure any alarms / hourly chimes are disabled.

Attend your subject warm up session before the exam. Your teacher will tell you when this is, where and what time

Relax!

In a nutshell.....

Keep a sense of normality
Have a good breakfast
Get an early night
Keep hydrated-

By failing to prepare your are preparing to fail
REVISON TIPS: BEFORE YOUR EXAM

- Make your way slowly to your position and sit yourself comfortably. You will be sat in candidate number order. Check the exams board in main reception to find your location.
 AC=Assessment Centre
 CH=Concert Hall
 STC=Staff Training Centre
- Make sure you listen very carefully to instructions that are given or any announcements that are made. If anything is unclear, ask questions before you start as this may save you a great deal of time later.
- Set out your pens/pencils etc. and set up your clock or wrist-watch so that you can see it just by looking up and not having to move anything out of the way.
- Turn off mobile phones and hand it in at the front. Or just leave it at home!
- Make sure that you have everything necessary - question paper, answer papers, additional sheets etc. Ask the invigilator if something appears to be missing.

In a nutshell.....

- Have a bottle of water on your desk
- Equipment should be in a clear bag/pencil case
- Hand in mobile phones, switched

Once in the venue, you must NOT communicate in any way with another candidate. This may result in you being removed from the exam. You will NOT be allowed to resit it.
Revision Tips: During Your Exam

- Read all the paper and all the instructions carefully - in your product design paper, you will be expected to answer ALL the questions.
- “Speed Read” the paper to get an idea of what questions are in it but then...
- Read each question carefully and thoroughly and make sure you understand what it is asking. Read all parts of the question before deciding whether or not to answer it. Underline key words in the question. This will help you answer them.
- Try to write neatly and clearly.
- Relax as much as possible and try to think clearly and keep confident.
- In a given question, concentrate of what you do know rather than what you don’t know.
- Use what you know to maximum effect, but remember to ANSWER THE QUESTION.
- Do the questions you feel most confident about first (it rarely matters which order you answer questions in). This will help to build your confidence and you may find yourself remembering more things.
- Sometimes, intense thought whilst answering a question can facilitate understanding. If you find this happening, try to use it to maximum effect.
- Keep thinking positive and do the best you can. Just answer as much as you can.
- If, after reading a question, you genuinely feel it is ambiguous or too broadly based, state this in the first part of your answer and explain briefly your reason for trying to answer a question in a particular way. The examiner will then have a better chance of empathising with your answer.
- Answer the question.

In a nutshell.....

- Read the paper first
- Answer all the questions fully

RELAX.....
REVISION TIPS: YOUR EXAM...

- The GCSE Product Design paper is 2 hours long. Everyone sits the same paper.
- There are 120 marks on offer.
- You will be given a pre-release theme sheet before the exam. It usually available after March 1 in the year of the examination.
- Your paper is divided into 2 sections.
- Section A is designing worth approximately 30 marks.
- Section B covers the rest of the specification and is worth approximately 90 marks.
- You are to answer ALL the questions on the paper.

What do you need to take into the exam with you?
- Pens
- Pencils
- Pencil Crayons
- Ruler
- Rubber
- Pencil Sharpener

In a nutshell......

- Read the paper
- Have pencils and pens ready
- Use pencil crayon to add colour

RELAX.....
REVISION TIPS: ANSWERING THE QUESTIONS

<table>
<thead>
<tr>
<th>Give / State / Name (1 mark)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally a one-word or two-word answer, at the very most a sentence. eg Give the name of the symbol below. This will result in only one correct answer. The mark scheme lists the single answer with the mark allocation being a single mark. eg Give two reasons _______________. The mark scheme will give a number of possible reasons. The mark allocation would be 2 x 1 (2 answers, 1 mark for each answer). Exactly the same style should be adopted for State, Name etc. eg Name a specific item ... This requires students to give a specific item. Generic answers such as wood or plastic would gain no marks. These type of questions will usually appear at the beginning of the paper or question part and are designed to ease you into the question with a simple statement or short phrase.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Describe / Outline (2 + Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A higher level of response than GIVE / STATE / NAME. Normally requires a statement or account of something, consisting of one or two sentences making reference to a number of points. Allocation of marks is normally at least 2 (1 mark for each point accounted for). If more points are required in the description, then mark allocation is increased accordingly. These type of questions are quite straightforward. They will ask you to simply describe something in detail. Some questions may also ask you to use notes and sketches therefore you can gain marks with the use of a clearly labelled sketch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explain / Justify (2 + Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A higher level response than DESCRIBE. Normally requires a clear or detailed account of something which normally includes justification, reasons or examples. Allocation of marks is normally at least 2 (1 mark for each point with justification). If more points are required to be justified, then mark allocation is increased accordingly. eg Explain how .. Normally the mark scheme will give a number of key points expected in the answer with a statement such as '1 mark for each key point'. This is exactly the same procedure for such instructions as describe, discuss, evaluate etc. These type of questions are asking you to respond in detail to the question. No short phrases will be acceptable here. Instead, you will have to make a valid point and develop/justify it to gain full marks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluate / Discuss / Compare (4 + Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>These type of questions are designed to stretch and challenge you. They will always be awarded the most amount of marks because they require you to make a well balanced argument, usually involving both advantages and disadvantages.</td>
</tr>
</tbody>
</table>

ETH 2010
Materials and Components

Candidates should have a knowledge and understanding of the processes and techniques which aid manufacture and of the commercial and industrial applications of a range of materials involved in manufacturing their products. In quantity, it is expected that designing and making will address complete product issues and therefore deal with materials which would aid manufacture, such as moulds, cutting dies, printing blocks, jigs etc. as well as dealing with issues such as labelling, packaging etc. It will be important therefore that candidates can utilise a variety of suitable materials and components.

Whilst undertaking product analysis activities, it is expected that candidates will make detailed reference to the materials used as well as the associated manufacturing issues.

Classification and working properties of materials

The following materials and components are considered to be suitable for candidates following this course of study. Candidates are not required to study all materials, but centres must provide opportunities for candidates to learn about a range of materials and to use them in practical contexts, during both the development and manufacture of products and during product analysis. As a minimum, candidates should study paper/cardboard and one other material area. Those studying the electronic and control components are strongly advised to also study one other material area in addition to paper/cardboard.

Candidates may employ any necessary materials in the modelling, prototyping or manufacture of their products.

 Candidates will be required to demonstrate their application of knowledge, understanding and skills in both assessment units.

Health and Safety factors should be a major consideration when working with any of the materials.

Paper/card

When working with paper/card materials candidates should:

- be able to identify common papers such as layout, cartridge, tracing, grid, cart, corrugated card, duplex board, solid white board, foam core board;
- understand the different properties and uses of common materials such as wood for communication and as a material for manufacturing products such as packaging;
- understand the availability of common components e.g. to fasten, seal, hang, pour, join, bind, index;
- understand that many paper based boards are laminated to other materials and that the composition can be adjusted to create different properties for specific purposes e.g. for-based for food packaging;
- understand the stock forms for paper/cardboard materials i.e. size, thickness, weight and colour;
- have a basic understanding of the source of paper and the primary processes involved in conversion to workable materials.

Timber based materials

When working with timber based materials candidates should:

- be able to identify common timbers such as pine, mahogany, teak, sycamore, beech used in the manufacture of products;
- be able to identify common manufactured boards i.e. MDF, plywood, chipboard, balsa board, hardboard;
- understand the different properties and uses of such materials within commercial products;
- understand that many timber-based materials are manufactured therefore the composition can be adjusted to create different properties for specific purposes;
- understand the stock forms for timber based materials i.e. rough sawn, PSE, sheet sizes and routings;
- have a basic understanding of the source of timber and the primary processes involved in conversion to workable materials.
EXAM CONTENT

Ferrous and non-ferrous metals
When working with metals candidates should:
- be able to identify common metals i.e. silver, stainless steel, mild steel, cast iron, brass, copper, zinc, aluminium, pewter;
- understand the different properties and uses of such materials within engineering and domestic products;
- understand that many metals are alloys or have coated finishes therefore the composition can be adjusted to create different properties for specific purposes e.g. casting alloys, plated metals;
- understand that the properties of metal can be changed by heat treatment;
- have an understanding of the stock forms for metals i.e. sheet, rod, bar, tube;
- have a basic understanding of the source of metals and the primary processes involved in conversion to workable materials.

Plastics
When working with plastic materials candidates should:
- be able to identify common thermoplastics i.e. high impact polyethylene, expanded polypropylene, acrylic, polystyrene, HDPE, PVC, PET;
- be able to identify common thermosetting plastics i.e. GFRP, Epoxy, urea, UF, MDF;
- understand the difference between thermoplastics and thermosetting plastics;
- understand the ways in which plastics can be formed, especially with regard to consumer products, i.e. vacuum forming, injection moulding, blow moulding, the bonding, compression moulding, extrusion;
- understand that most plastics are synthetic and that the composition can be adjusted to create different properties for specific purposes e.g. increase rigidity, reduce weight, insolubility;
- understand the stock forms for plastic materials i.e. sheet, rod, powder, granules, foam;
- have a basic understanding of the source of plastics and the primary processes involved in conversion to workable materials.

Ceramics
When working with ceramic materials candidates should:
- be able to identify common clays and related materials such as St. Thomas, porcelain, plaster of Paris, concrete, glass;
- understand that firing methods and temperatures affect both the material structure and the effect of applied glazes;
- understand the different properties and uses of such materials particularly with regard to domestic pottery and the electrical industry;
- understand that most ceramic products are combinations of clay and glaze and that the composition can be adjusted to create different properties for specific purposes;
- understand the stock forms for such materials i.e. slip, body, pigments, glazes;
- have a basic understanding of the source of ceramic materials and the primary processes involved in conversion to workable materials.

Textiles
When working with textile materials candidates should:
- be able to identify common natural and synthetic fibres such as cotton, wool, silk, linen, polyester, Polyamide (nylon), flax, acrylic, polyester (lycra);
- understand the difference between woven, knitted and bonded fabrics and the different properties and uses of such fabrics;
- understand the stock forms for yarns and fabrics i.e. yarn, roll, ree, weight, ply;
- understand that many textile fabrics are mixtures or blends of different fibres and that the composition can be adjusted to create different properties for specific purposes;
- have a basic understanding of the source of textile fibres and the primary processes involved in conversion to workable materials.
EXAM CONTENT

Food

When working with food materials candidates should:

- be able to classify food materials as starch, sugar, protein, fats, fibres, vitamins, minerals;
- understand the working characteristics of food materials;
- understand the way food components are specified i.e. by weight and volume;
- understand that food components are available in a variety of forms i.e. fresh, frozen, dehydrated, liquid, combi;
- understand that combining and processing materials can provide different working characteristics;
- have a basic understanding of the source of basic foods and the primary processes involved in conversion to usable materials.

New materials

Candidates should:

- have a knowledge and understanding that the development of new and smart materials are allowing designers to meet a variety of user needs in new and exciting ways e.g.
 - Precious Metal Clay (PMC) used in jewelry manufacture,
 - corn starch polymers used in packaging,
 - thermochromic pigments used for thermal warning patches
 - shape memory alloys
 - Quantum Tunneling Composites (QTC) used to incorporate electronics into textiles;
- have an awareness of the importance of the development of nanomaterials and integrated electronics in the area of Design and Technology.

Electronic and Control components

When working with electronic and control components candidates should:

- be able to identify common electronic and mechanical components and understand their functions and uses i.e. power cells, transistors, resistors, capacitors, switches, integrated circuits, buzzers, speakers, solenoids, gears, pulleys, interlocks, levers, chain & sprockets, pneumatic cylinders;
- understand the way in which such components are specified e.g. volts, ohms, beats per minute (rpm);
- have a basic understanding of how components can be combined to create systems with specified functions.

Manipulating and Combining Materials

Candidates should learn:

- how materials can be combined and processed in order to create more useful, or desirable, properties;
- how these properties are utilised in industrial contexts;
- how a range of materials are prepared for manufacture, allowing for waste and the finishing;
- about a variety of self-finishing and applied-finishing processes, and appreciate their importance for aesthetic and functional reasons;
- that to achieve the optimum use of materials and components, account needs to be taken of the complex inter-relationships between materials, form and manufacturing processes;
- how pre-manufactured standard components are used to improve the effectiveness of the manufacturing process and be able to identify a small range appropriate to the material areas studied.
Design and Market Influences
Candidates should develop an understanding of the broad perspectives of the designed world. This will include the appreciation of time, shape, form, proportion, colour, movement and texture within a critical awareness of aesthetics and ergonomics.

Evolution of Product Design
Candidates should:
• identify ways in which products evolve over time because of developments in ideas, materials, manufacturing processes and technologies as well as because of social, political, cultural and environmental changes;
• have a broad knowledge and understanding of major design movements since 1900 e.g. Arts & Crafts Movement, Art Nouveau, Art Deco, Bauhaus, Modernism, De Stijl, Memphis, Post Modernism;
• recognize that design movements and cultural influences are still influencing new product development;
• have a knowledge and understanding that manufacturing industries are involved in continual improvement (CI) and this is a major influence on product evolution;
• have a knowledge and understanding that sometimes new products are developed because of innovating fail and sometimes because of technological push.

Design In Practice
Product development
Candidates should:
• respond creatively to briefs, developing their own proposals and producing specifications for products and associated services;
• select and analyse the situation/problem;
• know how to gather and respond to research, analysis and select information and data to support the design and manufacture of products;
• control the technical issues involved in the design of a product which is to be produced/manufactured in quantity;
• consider a wide range of years and create designs which are inclusive;
• investigate the degree of accuracy required for the product to function as planned, taking account of critical dimensions and tolerances in determining methods of manufacture;
• understand how graphic techniques, ICT, equipment and software, particularly CAD, can be used in a variety of ways to model aspects of design proposals and assist in making decisions;
• have a knowledge and understanding that design ideas are protected in law through copyright, patents and registered designs.

Communication and representation of ideas
Candidates should:
• use a range of graphical techniques such as annotated sketches, formal drawing conventions, CAD to communicate design details in a clear and appropriate manner;
• develop a range of presentation techniques and media to convey materials, finishes or finish such as mood boards, presentation drawings, digital photography, CAD;
• use tone, type, colour rendering using a range of media;
• use formal page layout techniques as an aid to planning and presenting drawings and information;
• use a range of prototyping and modelling methods in order to explore design alternatives during the design process as well as a means of communicating proposals which can be used for evaluation purposes;
• use a range of ICT equipment and software to communicate, model, develop and present ideas.

Design Methodology
Candidates should:
• understand that design is not a linear exercise but a iterative. The traditional design cycle is just one of many methods for successful designing;
• understand that empirical problem solving, a systems approach and intuitive design are all valid approaches to designing;
• experience a variety of design approaches;
• be able to use the following as starting points for designing and making:
 - natural form, pattern and structure
 - geometry and mathematics
 - the work of well known artists, designers, craftsmen and technologists
 - detailed product analyses
 - religious and cultural influences

Packaging
Candidates should:
• have a knowledge and understanding of a variety of materials and processes used to package products and to be able to balance the likely impact upon the environment in terms of social responsibility and sustainability;
• understand the different basic functions of packaging such as protect, inform, contain, transport, preserve and display;
• have knowledge and understanding of the need for product labelling and the common symbols used to indicate hazards, storage and handling, maintenance, disposal and design protection.
EXAM CONTENT

Product Marketing

Candidates should:
- have a knowledge and understanding of the power of branding and advertising and the effect that they have upon different consumer groups;
- be able to promote their own products using a variety of techniques, e.g. leaflets, flyers, point of sale, packaging and digital media.

Design in the Human Context

Human Factors

Candidates should understand:
- that products are used by effective, designers, manufacturers and craftsmen need to take account of a wide range of human factors in an attempt to produce inclusive rather than exclusive designs (e.g. socio-cultural values);
- that anthropometric and ergonomics considerations affect many design decisions;
- that the needs of the user are a key part of the design process;
- that design decisions for large scale manufacturing often aim to cover the needs of the 90th percentile population;
- the effect of colour used in product design to influence messages such as "danger" or to help to produce moods such as "warmth";
- social, economic and ethnic factors of the target market and the needs of the target market, e.g. an elderly, religious or ethnic group;
- that all modern manufacturing systems result from the layout of materials, equipment and control, such as working triangles in the kitchen, production lines, assembly lines.

Safety

Candidates should understand:
- the relevance of safety with regard to themselves, the manufacturer and the product user;
- that designers and manufacturers have a moral and legal responsibility for the products that they create;
- how to undertake simple tests to ensure that the products they make are suitable for the specific use groups they are designed for;
- the importance of risk assessment at all stages of designing and making.

Quality

Candidates should:
- ensure that their products are of a suitable quality for their intended use;
- understand that many judgements regarding quality are subjective and will be dependent upon various criteria e.g. cost, availability of resources and other social factors;
- have a knowledge and understanding of commercial methods which are used to improve quality assurance e.g. quality circles, team working, BS EN ISO 9000;
- be able to devise and apply test procedures to check the quality of their work at critical points during design and manufacture, and to indicate ways of improving it.

Ethical, Environmental and Sustainability Issues

Candidates should:
- take into consideration the ethical, environmental and sustainability issues relating to the design and manufacture of products (e.g. fair trade, product miles, carbon footprint, product disposal, and the following related principles - reuse, recycle, repair, reduce, re-think, refuse, etc.);
- have a knowledge and understanding of the main factors governing environmentally friendly products, or "Green Design" and be able to identify a range of these;
- have a knowledge and understanding of the main factors relating to recycling and reusing materials or products (i.e. material identification, material separation, collection, processing, energy costs, subsequent usage, waste).

Consumer Issues

Candidates should:
- have a knowledge and understanding of the work of consumer groups and pressure groups and how products are evaluated – e.g. Which? reports;
- have a knowledge and understanding of the work of standards agencies (e.g. BSI, ISO) and how these standards affect product design and manufacture and subsequent testing;
- have a knowledge and understanding that a wide range of legislation exists to protect consumers and that designers and manufacturers need to ensure that their products comply with it.
EXAM CONTENT

Processes and Manufacture

Product Manufacture

Candidates should learn:

- how a range of materials are cut, shaped and formed to designated tolerances;
- the difference between quality control and quality assurance techniques;
- to produce detailed working schedules, e.g. time charts, precedence tables, identifying critical points, i.e. QA and QC, in the making process and providing solutions to possible problems;
- to evaluate the quality of their personal project work and to devise modifications that will improve their products.

Industrial and Commercial Practice

Methods of production

Candidates should:

- understand that products are manufactured to different scales of production i.e. one-off, batch, mass, continuous, just in time (JIT);
- understand that products are manufactured to different scales of production i.e. one-off, batch, mass, continuous, just in time (JIT);
- design and make for one-off, batch and mass production;
- work as part of a team on the batch production of products and/or components;
- work as part of a team on the batch production of products and/or components;
- use a range of procedures including CAD/CAM, where appropriate, to ensure consistency in the production of their products;
- use both hand and machine methods of cutting and shaping materials appropriate to the scale of production.

Manufacturing systems

- understand that commercial manufacturing is a system, or group of sub-systems which requires:
 - special buildings or classes of work;
 - the organisation of people;
 - the organisation of tools and equipment;
 - risk assessment and compliance with health and safety regulations;
 - the organisation of materials;
 - information systems to help people communicate with each other reliably;
 - ways of changing the shape and form of materials to increase their usefulness;
 - ways of using tools and equipment to transform the materials into products;
 - the design and production of many products in a systematic way;
 - quality assurance procedures and quality checks to be made;
 - efficient working methods;
 - ways of safely handling costs of the unwanted;
 - outputs of manufacturing (i.e. disposing of recycling of waste materials, and ways of looking after the environment);

Use of ICT (Information and Communication Technology)

Candidates should:

- understand how ICT facilitates a wide range of manufacturing functions, e.g. just in time (JIT), data conferencing, software sharing, stock control, data transfer and remote manufacturing;
- have an understanding of the application of CNC (Computer Numerical Control) in modern manufacturing as appropriate to a specific material area;
- understand how computer-aided manufacture (CAM) is used both in manufacturing in quantity and in the production of single items and small batches;
- understand how CAD/CAM allows for higher levels of accuracy, repeatability and efficiency.
Here are some suggestions, but add to the list as and when you find more to help vary your revision sources. DO NOT rely upon the internet alone. Use your revision books and notes too!

<table>
<thead>
<tr>
<th>Websites:</th>
<th>Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>designandtech.com</td>
<td>CGP Product Design Revision Guide</td>
</tr>
<tr>
<td>manufacturing.stanford.edu</td>
<td></td>
</tr>
<tr>
<td>alessi.com</td>
<td></td>
</tr>
<tr>
<td>designmuseum.org</td>
<td></td>
</tr>
<tr>
<td>Flying-pig.co.uk</td>
<td></td>
</tr>
<tr>
<td>www.edexcel.org</td>
<td></td>
</tr>
</tbody>
</table>
It would be useful to develop your own graphics dictionary, here are a few words as a starting point:

<table>
<thead>
<tr>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergonomics</td>
<td></td>
</tr>
<tr>
<td>Anthropometrics</td>
<td></td>
</tr>
<tr>
<td>Impact adhesive</td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td></td>
</tr>
<tr>
<td>Mass market</td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td></td>
</tr>
<tr>
<td>MDF</td>
<td></td>
</tr>
<tr>
<td>Die Cutting</td>
<td></td>
</tr>
<tr>
<td>Innovation</td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
</tr>
<tr>
<td>Kyoto Protocol</td>
<td></td>
</tr>
</tbody>
</table>
Literacy Connectives

Use these examples to enhance your vocabulary in your exam or in your coursework written elements.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Cause and Effect</th>
<th>Changing topic</th>
<th>Emphasising</th>
<th>Comparison</th>
<th>Concession</th>
<th>Summing up</th>
<th>Rephrasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example</td>
<td>...so...</td>
<td>Turning to...</td>
<td>Mainly</td>
<td>Compared with...</td>
<td>Although...</td>
<td>In conclusion...</td>
<td>To other words</td>
</tr>
<tr>
<td>For instance</td>
<td>As a result of...</td>
<td>As regards...</td>
<td>Mostly</td>
<td>In the same way...</td>
<td>Likewise...</td>
<td>In summary...</td>
<td>That is...</td>
</tr>
<tr>
<td>such as</td>
<td>because...</td>
<td>With regard to...</td>
<td>Usually</td>
<td>Equally...</td>
<td>As with...</td>
<td>To sum up...</td>
<td>To put more simply...</td>
</tr>
<tr>
<td>...as can be seen</td>
<td>This means that...</td>
<td>Concerning...</td>
<td>Unfortunately</td>
<td>...are similar in that...</td>
<td>...are similar in that...</td>
<td>Overall...</td>
<td></td>
</tr>
<tr>
<td>...as is shown by</td>
<td>...due to...</td>
<td>As far as... is concerned</td>
<td>Most often</td>
<td></td>
<td></td>
<td>In the whole...</td>
<td></td>
</tr>
<tr>
<td>Take the case of...</td>
<td>therefore...</td>
<td>Moving on to...</td>
<td></td>
<td></td>
<td></td>
<td>In short...</td>
<td></td>
</tr>
<tr>
<td>This can be proven by...</td>
<td>...caused...</td>
<td>Now to consider...</td>
<td></td>
<td></td>
<td></td>
<td>In brief...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>To conclude...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>So to round off...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listing points:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firstly, secondly, finally</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the first place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To begin with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On top of this</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In addition to this</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More importantly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...and...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...also...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...as well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furthermore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Another</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not only...but also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrasting:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>However</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the other hand...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...although...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Despite this...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the contrary...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instead...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As for...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whereas...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>while...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concession:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Although...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>While it is true that...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Despite the fact that...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In spite of...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Although...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Despite this...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>However...yet...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Still...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevertheless...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>