

GCSE

Mathematics B

3302 Module 5

Paper 1 Higher

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

1	$180-162$ or 18	M1	$(n-2) \times 180=162 n$
	$360 \div$ their 18	M1 dep	
	20	A1	

2	$3 n+1$

B2	$\begin{array}{l}\text { oe } \\ \text { Allow change of letter }\end{array}$

B1 for $3 n+\mathrm{c}$
B1 for $k n+1$
$n 3+1$ scores B0 B1
Ignore further working

3(a)	4	B1	
	-5	B1	
(b)	All their 7 points correctly plotted	B1 ft	
	Correct smooth curve $(\pm 2 \mathrm{~mm})$	B1 ft	Straight lines score B0 Penalise feathering or double lines
(c)	4.24	B1 ft	Read off values from their graph
	-0.24	B1 ft	Tolerance $\pm \frac{1}{2}$ square (ie $\left.\pm 0.1\right)$ If more than 2 points of intersection accept 2 answers Allow co-ordinates $(x, 0)$ but not $(0, x)$

4(a)	m^{7}	B1	
	p^{3}	B1	
(b)	q^{8}	B1	

5(a)	B2	B1 for each term If final answer incorrect $10 x+5-3 x+12$ (with at most 1 error) scores B1 $7 x+17=0$ B0 B1	
(b)	$y^{2}-4 y-2 y+8$	B1	Allow mark if 3 terms correct Or 2 terms correct in $a y^{2}+b y+c$
	$y^{2}(+)-6 y+8$	B1	
(c)	$4 t^{2}+10 t-10 t-25$ or $(2 t)^{2}-5^{2}$	M1	Allow mark if 3 terms correct
	$4 t^{2}-25$	A1	
			In whole question, penalise equating to 0 on the first occurrence only

6(a)	Reflection	B1	
	(in line) $y=x$	B1	
(b)	Translation left 4, down 3	B2	Allow B1 for left 3 down 4 Note: If evidence of triangle D used, treat as misread -1
	Their translated triangle rotated through 90° anticlockwise	M1	Allow even if not about $(0,-2)$
	Correct final position	A1	Correct position for C $(0,-2),(0,-4),(-3,-2)$ Correct position for $D($ misread B1 M1 A1) $(-1,-5),(-3,-5),(-3,-2)$

$7(\mathrm{a})$	Pairs of intersecting arcs above and / or below $A B$	M1	Must be attempt at common radius for each pair Accept construction on any side
	Accurate perpendicular bisector	A1	Withhin 2 mm of mid-point and within 2° of perpendicular
(b)	i) Perpendicular bisector of $A C$ or $B C$	B1	Same tolerance and conditions as above
	ii) Complete circle centred on point of intersection of perpendicular bisectors	M1	
	Correct circle drawn within 2 mm	A1	

$8(\mathrm{a})$	$180-90-62$ or $90-62$	M1	oe
	28	A 1	
(b)	$\angle Q=80^{\circ}$ or reflex $\angle P O R=200^{\circ}$	M1	Note: 80° may be seen on diagram
	160	A 1	
(c)	$\angle A=44^{\circ}$ or third \angle at $C=86^{\circ}$	M1	Allow $180-44-50$
	$(z=) 86$	A1	
	'Alternate segment'	B1	oe

9(a)	$16-k$ seen	M1	Not $-x^{2}=k-16$
	$\sqrt{16-k}$ or $-\sqrt{16-k}$	A1	Penalise further working or $\sqrt{16}-k$
(b)	$100 A=100 P+P R T$	M1	Correctly removing fraction
	$P(100+R T)$ seen	M1	Correctly factorising for P Note: Method marks are independent $P\left(1+\frac{R T}{100}\right) \text { earns M2 }$
	$P=\frac{100 A}{100+R T}$ or $P=\frac{A}{1+\frac{R T}{100}}$	A1	Note: Mark is dependent on both M marks

10(a)	$(2 x \pm a)(x \pm b)$ where $a b=15$	M 1	
	$(2 x+3)(x-5)$	A 1	Ignore further working
(b)	-1.5 and $(+) 5$	B 1 ft	Must be seen in (b)
	$[($ their -1.5$)+($ their 5$)] \div 2$	M 1	1.75 seen B1 M1
	$x=1.75$	A 1	Note: Must have " $x=\ldots "$ here

$11(\mathrm{a})$	$\mathbf{a}+2 \mathbf{b}$	B 1	oe	Note:
(b)	$2 \mathbf{b}-3 \mathbf{a}$	B 1	oe	$\binom{a}{2 b}$ and $\binom{-3 a}{2 b}$ correct scores SC1
(c)	$\boldsymbol{S R}$	UT	B 1	

12	$\begin{aligned} & x^{2}+(x+7)^{2}=25 \\ & \text { or } \quad(y-7)^{2}+y^{2}=25 \end{aligned}$	M1	For substitution
	$\begin{aligned} & x^{2}+14 x+49 \\ & \text { or } \quad y^{2}-14 y+49 \end{aligned}$	M1	For expansion of $(y-7)^{2}$ or $(x+7)^{2}$ (at least 3 correct terms)
	$\begin{aligned} & 2 x^{2}+14 x+24=0 \\ & \text { or } \quad 2 y^{2}-14 y+24=0 \end{aligned}$	M1 dep	Complete simplification and all on one side of equation. Dependent on both previous marks
	$\begin{aligned} & (x+4)(x+3)=0 \\ & \text { or } \quad(y-4)(y-3)=0 \end{aligned}$	A1	Or $(2 x+8)(x+3)=0$ or $(x+4)(2 x+6)=0$ Or $(2 y-8)(y-3)=0$ or $(y-4)(2 y-6)=0$ Or $y=\frac{7+1}{2}$ Or $x=\frac{-7 \pm 1}{2}$ oe
	$x=-4 \text { and } x=-3$ or $y=(+) 4$ and $y=(+) 3$	A1	Or 1 correct pair
	$y=(+) 3 \text { and } y=(+) 4$ or $x=-4$ and $x=-3$	A1	
	Both correct pairings	A1	$\begin{array}{ll} x=-4, y=(+) 3 & \text { SC1 } \\ x=-3, y=(+) 4 & \text { SC1 } \end{array}$ Note: Do not award SC marks from clearly incorrect working

13(a)	Wave curve through $(0,0)(90,1)$ $(180,0)(270,-1)(360,0)$	B1	
(b)	Use of symmetry on a reasonable attempt at sine curve Or $180-67$	M1	$0.75<$ reading <1 and obtuse angle answer
	113 or 427	A1	SC2 cosine graph and 293
(c)	-0.92	B1	

14(a)	$\frac{120}{360} \times 2 \pi 15$ Or $\frac{30 \pi}{3}$	M 1	oe
	Cancelling to 10π	A 1	
(b)	$2 \pi r=10 \pi$ Or $\frac{15}{3}$	M 1	
	$(r=) 5$	A 1	

$15(\mathrm{a})$	$(x+3)^{2}$	B1	
(b)	Gradient ≈-3 Or y intercept ≈ 2	M1	Line steeper than $y=-x$
	Completely correct	A1	Must pass through intercept on x axis and look symmetrical about the x axis

