

ASSESSMENT and QUALIFICATIONS ALLIANCE

Mark scheme June 2003

GCSE

Mathematics B 3302 Module 5 Paper 2 Higher

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

1	$3^2 + 1.2^2$ (= 10.44)	M1	Must add two squares
	$\sqrt{\text{their 10.44}}$	M1	Dependent on first M1
	3.2 or 3.23	A1	Note: 3.2 scores A0 Answer = 3 with no working scores M0

2	Trial between 2 and 3 correctly	Di	Working must be seen			
	evaluated to the nearest whole	B1			•	uated and either
	number		rounded o	or truncated and	d given	to at least 1 dp
	Trials between 2.3 and 2.4 inclusive	D1				
	that bracket the answer	B1	2.3	28.267	2.7	38.583
	Trial at 2.35 or 2.36 or 2.37 and	B1	2.4	30.624	2.8	41.552
	2.4 stated as answer		2.5	33.125	2.9	44.689
			2.6	35.776		
			2.35	29.42787	5	
			2.36	29.66425	-	
			2.37	29.90205.	3	
				possible misre		
			$x^3 + 7$ and answer 2.8 B1			
			$x^2 + 7x$			
			$x^3 - 7x$ ((no answer bet	tween 2	and 3) B0

3	$\pi \times 9^2$	M1	Or 254 () seen
	$\pi \times 5^2$	M1	Or 78 () or 79 seen
	Subtracting	M1 dep	Dependent on both previous M1s
	176 (or 56π)	A1	Accept 175.8 to 176 Using 18^2 and $10^2 \Rightarrow 703.2$ to 704 SC2
	cm ²	B1	Note: units mark

4	2x + 10 seen	B1	
	6x and/or – 3 seen	M1	Or - 6x or 3
	$x = -\frac{1}{2}$	A1	Do not accept $\frac{-3}{6}$

$\rho = \rho q = 2\pi i s wrong$	5(a)	r^4 should be r^3	B1	oe eg should be 3 dimensions r^4 is too many r^4 is wrong Note: an incorrect statement given nullifies a correct one in (a) and (b)
$D_1 = D_1 $	(b)	2q is not 2-dimensional	B1	or eg $2q$ is wrong

AQA

6(a)	$1 \le n \le 6$	M1	oe
	1 2 3 4 5	A2	A1 for 4 correct or if 6 included - 1 for each extra number
(b)	i) $y = \frac{1}{2}x$	B1	oe
	ii) $y \ge 0$	B1	Accept $y > 0$ or $0 \le y \le 3$
	$x \leq 6$	B1	Accept $x < 6$ or $0 \le x \le 6$
	$y \le \frac{1}{2}x$	B1 ft	ft their (b)(i) Accept $y < \frac{1}{2}x$ or $x \ge 2y$ oe
			SC1 all 3 boundaries given as equationsSC2 all 3 boundaries given as inequalities the wrong way round

7	$\frac{SQ}{14} = \cos 25^{\circ}$	M1	
	$SQ = 14 \times \cos 25^{\circ} (= 12.68)$	M1	
	$\frac{\text{their } SQ}{8.6} = \tan R$	M1	Award this M1 only if SQ has been found by an attempt at trigonometry
	1.475 or 1.48	A1 ft	ft their SQ
	55.87 or 55.9 or 56	A1	

8(a)	3x(x-2y)	B2	B1 for $3x(x)$ or $3(x^2 - 2xy)$ or $x(3x - 6y)$ or $3x(2y)$		
(b)	$(y \pm a)(y \pm b)$ where $ab = 14$	M1	a and b must be integers		
	(y-7)(y-2)	A1	Ignore solution of equation following correct brack		

9 Scale factor $\frac{9}{6}$ or $\frac{6}{9}$ or $\frac{6}{4}$ or $\frac{4}{6}$	M1	oe
$AB = (\text{their } 1.5) \times 4$	A1	Or $9 \div$ (their 1.5)
DB = 2	A1	Alternative: $\frac{4}{4+x} = \frac{6}{9}$ or $\frac{4+x}{4} = \frac{9}{6}$ M1 36 = 24 + 6x M1 x = 2 A1

10	Substituting in formula:	M1	Allow one error
	$-4 \pm \sqrt{(4)^2 - 4 \times 1 \times -10}$		Errors are: wrong sign for $b (+4)$
	2		b^2 wrong (= 8 or -16)
			-4ac = -40
			M0 for any of the following:
			Not dividing whole of top line by 2a
			Using wrong values for a, b and/or c
			Forgetting square root
			Mis-copying formula
	- 5.74	A1	Note: some working must be seen
			answers without working scores M0 A0 A0
	1.74	A1	1.7 and – 5.7 or 1.741 and – 5.741 M1 A1 A0
			Alternative method (completing the square):
			$(x+2)^2 - 14 = 0 \qquad M1$
			$x = -2 \pm \sqrt{14}$ A1
			x = -5.74, 1.74 (both) A1
L	1	1	

11	1.5^3 (× 480)		Accept 1.5^3 0.666 ³ 0.66 ³ 0.67 ³ or attempt at $\frac{30}{20}$ cubed
	1620	A1	

12	AB = DC (given)	B 1	"given" may be omitted		
	$\angle ABE = \angle CDE$ alternate (angles)		Accept Z angles instead		
	$\angle BAE = \angle DCE$ alternate (angles)	B2	of alternate angles	Any 2 of these for B2 Reasons must be stated	
	$\angle AEB = \angle CED$ opposite (angles)				
	Congruent because	B1 dep	This is dependent on the first B1		
	AAS or ASA or SAA	_	Do not accept 'congruent because angles and sides		
			are the same'		
			Alternative method:		
			ABCD is a parallelogram B1		
			AE = EC, DE = EB, angles at E or $AB = DC$		
			(all 3 needed)	B2	
			Congruent because SAS	or SSS B1	

13	Angle 82°	B1	May be from working or seen on diagram
	$18^2 + 25^2 - 2 \times 18 \times 25 \times \cos 82^\circ$	M1	$324 + 625 - 900 \times \cos$ (their angle) ft their angle, but not 70° or 152°
	$x^2 = 823.7()$	A1 ft	Note: $x = 49 \cos 82$ or 6.81948 scores M1 A0 A0
	28.7	A1 ft	Follow through on an incorrect angle only 62° gives $\sqrt{526.47} = 22.9()$ 72° gives $\sqrt{670.88} = 25.9()$ 92° gives $\sqrt{980.409} = 31.3()$ Special cases: $70^{\circ} \Rightarrow 25.3(2)$ SC2 $152^{\circ} \Rightarrow 41.7(5)$ SC2

14	$(x+5)(x-2) (=) \frac{1}{2}x(x+8)$	M1	For setting up both areas correctly
	$\frac{(x^2 - 2)(x^2 - 2)(x^2 - 2)}{x^2 + 3x - 10}$	M1	This mark is independent of the first M1
	2(their $x^2 + 3x - 10$) = (their $x^2 + 8x$)	M1 dep	Accept $x^2 + 5x - 3x - 10$ This mark is dependent on the first M1 or their $(x^2 + 3x - 10) =$ their $(x^2 + 8x)$ halved
	$x^2 - 2x - 20 = 0$	A1	
15(a)	<i>a</i> = 3	B1	
	$\frac{(x-3)^2}{(x-3)^2 = x^2 - 6x + 9}$	M1	Or $a^2 + b = 13$ or $3^2 + b = 13$
	$\frac{(x-3)}{b=4}$	Al	
(b)	4	B1 ft	ft from their b
17	1	1	
16	x(x-1) - 2(x+1)	M1	Allow invisible brackets if recovered later $x^2 - 3x - 2$ seen as first line M1 A0
	$x^2 - 3x - 2$	A1	Accept uncollected terms eg $x^2 - x - 2x - 2$
	(x+1)(x-1)	M1	Accept $x^2 - 1$ as common denominator or RHS
	Their $(x^2 - 3x - 2) =$ their $(x^2 - 1)$	M1 dep	Dependent on first two M1s
	$(x=)-\frac{1}{3}$	A1	Accept - 0.33()
17	$(AC^2 =) 20^2 + 14^2 (= 596)$	M1	Or $10^2 + 7^2$
	$\sqrt{\text{their 596 (= 24.4)}}$	M1	Or √149
	$\frac{1}{2}$ (their 24.4) ÷ 16 = cos θ	M1 dep	Dependent on both previous Mls
	0.763 or 0.7629 or 0.7625	A1	
	40.27 to 40.54	A1	
18	$(x \pm a)(5x \pm b)$	M1	Give M1 for attempt to factorise into $(x \pm a)(5x \pm b)$ where <i>a</i> , <i>b</i> are integers and ab = 3
	(x+3)(5x-1)	A1	
	(x+3)(x-3)	B1	
	$\frac{5x-1}{x-3}$	B1	Do not award this B1 if candidate has given further working