Further Pure 3 Past Paper Questions Pack A

Series and Limits

Pure 3 June 2001

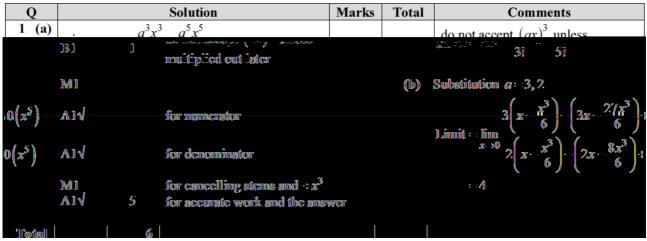
Q	Solution	Marks	Total	Comments
4 (a)	$1(x) = 5\cos(3x + \frac{1}{4})$	M1		Differentiate twice or use of sin(A+B) = sin A cos B + cos A sin B
	$f''(x) = -9\sin\left(3x + \frac{\pi}{4}\right)$	A1		
	$f(x) = f(0) + f'(0)x + f''(0)x^{2}$			
	$=\frac{\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}x - \frac{9}{2}\frac{\sqrt{2}}{2}x^2$	B1	3	AG
(b)	$g(x) = \frac{\sqrt{2}}{2} \left(1 + x + \frac{x^2}{2} \right) \left(1 + 3x - \frac{9}{2}x^2 \right)$	M1		
	$=\frac{\sqrt{2}}{2}(1+4x)$	Al		
	$-x^{2}$)	A1	3	
	Total		6	

6(a)(i)	$\mathbf{f}(x) = \mathbf{ln}(1-2x)$			
	$f'(x) = -2(1-2x)^{-1}$	M1A1		M1 – attempt to differentiate to get $\frac{*}{1-2x}$
	$f''(x) = -4(1-2x)^{-2}$	Alft		ft on f' $a(1-2x)^{-1}$
	$f'''(x) = -16(1-2x)^{-3}$	A1ft	4	ft on f" $b(1-2x)^{-n}$
(ii)	f(0) = 0, f'(0) = -2, f''(0) = -4, f'''(0) = -16	M1 M1		Use Maclaurin series Evaluate derivatives at <i>x</i> =0
	$\ln(1-2x) = 0 - 2x - \frac{4x^2}{2} - \frac{16x^3}{6}$	Al	3	AG convincingly obtained, derivation correct
				Note hence – so use of formula for $\ln (1 + x)$ is not allowed
(b)	$2xe^{x} = 2x\left(1 + x + \frac{x^{2}}{2} + \dots\right)$			
	$=2x+2x^2+x^3$	B1		Allow expansion of xe^x from first
	$2xe^{x} + \ln(1 - 2x) = x^{3} - \frac{8x^{3}}{3}$	M1		principles. M1 – add expanded forms.
	$k = \frac{-5}{3}$	A1	3	Allow – 1.67
	Total		10	

5 (a)(i)	$\mathbf{f}(x) = \cos 2x$			
	$f'(x) = -2 \sin 2x$	M1		$\cos 2x$, $k \sin 2x$, $l \cos 2x$
	$f''(x) = -4\cos 2x$	A1	2	
(ii)	f(0) = 1 $f'(0) = 0$ $f''(0) = -4$	B1ft		
	$\cos 2x \approx 1 + \frac{(-4)x^2}{2}$	M1		Use of f(0) f'(0) f''(0)
	$\approx 1-2x^2$	Al	3	Convincingly obtained
				Special Case
				$\cos x = 1 - \frac{x^2}{2}$
				$\Rightarrow \cos 2x = 1 - \frac{(2x)^2}{2}$
				$=1-2x^2$ B1
(b)	$e^{-2x} + \sin x$ = 1 - 2x + $\frac{(-2x)^2}{2} + x$			
	$(-2x)^2$	M1		Use given e^x approximation.
	$=1-2x+\frac{(-2x)}{2}+x$	A1		i.e. use $\pm 2x$ in given expression for
	$= 1 - x + 2x^2$	Al	3	e^x , or attempt series for e^{-2x} from first principles.
(c)	$1 - x + 2x^2 = 1 - 2x^2$	M1		
	$x = \frac{1}{4}$	Al	2	Accept 0.25
				Special Case
				Correct solution to a M1
	Total		10	soluble quadratic A1

Q	Solution	Marks	Total	Comments
5(a)(i)	$f(x) = (3x - 2)^{-1}$	M1		
	$f'(x) = -1 \times 3(3x - 2)^{-2}$	M1A1		M1 A0 for $-(3x-2)^{-2}$ or $3(3x-2)^{-2}$
	$f''(x) = 18(3x-2)^{-3}$	A1F	4	ft on f'(x) = $k (3x-2)^{-2}$
(ii)	$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2}$ $f(0) = -2^{-1}, f'(0) = -3(-2)^{-2},$	M 1		Use $x = 0$ in Maclaurin series (NB - need to see attempt at subsequent use)
	$f''(0) = 18(-2)^{-3}$ $f''(x) \approx -\frac{1}{2} - \frac{3}{4}x - \frac{9}{8}x^{2}$	A2, 1F	3	ft on (i); -1 EE
(b)	$2 4 8$ $(x-1)(x-2) = Ax(3x-2) + B(3x-2) + Cx^{2}$	M1		Any equivalent method M1 (as is)
	$x = 0, B = -1, x = \frac{2}{3}, C = 1$	M1A1		Alternative: $x^{2}-3x+2=(3A+C)x^{2}+(-2A+3B)x-2B$
	x = 1, 0 = A + B + C	ml		MIA1
				$ \begin{array}{c} 3A + C = 1 \\ -2A + 3B = -3 \\ -2B = 2 \end{array} \end{array} \begin{array}{c} B = -1 \\ M1 \\ C = 1 \end{array} \right\} A1 $
	but $B + C = 0 \implies A = 0$	A1	5	A = 0 convincingly shown
				SC(i): If A=0, then $B = -1$ and $C = 1$ 3 marks Now $\frac{-1}{x^2} + \frac{1}{3x - 2} = \frac{(x - 1)(x - 2)}{3x - 2}$
				so $A = 0$ 2 marks
				SC(ii): candidate introduces extra x's e.g. $Ax^2 (3x-2) + B(3x-2)x + Cx^2$
				standard method for A, B, C 1 mark (so max 2/5) 1 mark
(c)	$\frac{(x-1)(x-2)}{(3x-2)} = x^2 \left(-\frac{1}{x^2} - \frac{1}{2} - \frac{3}{4}x - \frac{9}{8}x^2 \right)$	M1		SC: $(x-1)(x-2)\left(\frac{1}{2}-\frac{3}{4}x-\frac{9}{8}x^2\right)$
				$=1-\frac{1}{2}x^2 -\frac{3}{4}x^3 +\frac{27}{8}x^3 -\frac{9}{8}x^4 Bl$
	$= -1 - \frac{1}{2}x^2 - \frac{3}{4}x^3 - \frac{9}{8}x^4$	A1	2	AG convincingly obtained
	Total		14	

Q	Solution	Marks	Total	Comments
5 (a)(i)	$f(x) = e^{-2x}$ $f'(x) = -2e^{-2x}$	B1		
	$\mathbf{f}''(\mathbf{x}) = 4\mathbf{e}^{-2\mathbf{x}}$	B1√	2	
(ii)	$f(x) = e^{-2x} f'(x) = -2e^{-2x}$ $f''(x) = 4e^{-2x}$ $f(x) = f(0) + f'(0)x + f''(0) \frac{x^2}{2}$ $f(0) = 1 f'(0) = -2$			
	f(0) = 1 $f'(0) = -2$	M1		Use $x = 0$ in Maclaurin series
	f''(0) = 4 $f(x) \approx 1 - 2x + 2x^2$	A1	2	AG convincingly obtained
(b)(i)		B 1	1	
(ii)	$1 - 2x + 2x^2 = 1 - \frac{9}{2}x^2$	M1		Set up equation
	$\frac{13}{2}x^2 - 2x = 0$ $x = \frac{4}{13}, 0.308$	ml		Rearrange to soluble form
	$x = \frac{4}{13}, 0.308$	Al	3	Accept 0.31 Ignore $x = 0$
	Total		8	


Pure 3 Ju	ine 2004
-----------	----------

	une 2004			~
Q	Solution	Marks	Total	Comments
6(a)(i)	$f(x) = \sin\left(2x + \frac{\pi}{6}\right)$			Alternative $f(x) = \sin\left(2x + \frac{\pi}{6}\right)$
	$f'(x) = 2\cos\left(2x + \frac{\pi}{6}\right)$	M1A1		$\frac{\text{M1 for}}{\cos\left(2x + \frac{\pi}{6}\right)} = \sin 2x \cos \frac{\pi}{6} + \cos 2x \sin \frac{\pi}{6}$
	$f''(x) = -4\sin\left(2x + \frac{\pi}{6}\right)$	A1	3	$=\frac{\sqrt{3}}{2}\sin 2x+\frac{1}{2}\cos 2x$
				$f'(x) = \sqrt{3}\cos 2x - \sin 2x M1A1$
				$f''(x) = 2\sqrt{3} \sin 2x - 2\cos 2x$ A1
				$\left(\cos\frac{\pi}{6} & \sin\frac{\pi}{6} \text{ terms need not}\right)$ be simplified
				If $f(x) = \sin\left(2x + \frac{\pi}{6}\right)$ expanded incorrectly
				i.e. $= \sin 2x + \sin \frac{\pi}{6}$
				$f'(x) = 2\cos 2x$
				$f''(x) = -4\sin 2x$, must be fully correct for M1A0A0
				If $f'(x) = \cos\left(2x + \frac{\pi}{6}\right)$ M1A0
				$f''(x) = -2\sin\left(2x + \frac{\pi}{6}\right) \qquad A1F$
				$x = 0, f(0) = \frac{1}{2}, f'(0) = \frac{\sqrt{3}}{2}, f'(0) = -\frac{1}{2}$
(ii)	$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2}$			M1A0 for part (ii)
	$f(x) = \frac{1}{2} + 2\frac{\sqrt{3}}{2}x - 4\frac{1}{2}\frac{x^2}{2}$	M 1		Use $x = 0$ in Maclaurin series, P.I.
	$\mathbf{f}(x) \approx \frac{1}{2} + \sqrt{3}x - x^2$	A1	2	AG convincingly obtained: show how x^2 term is obtained
(b)	$\left(1 - \left(1 - \frac{x^2}{2}\right)\right)$ $\left(\frac{1}{2} + \sqrt{3}x - x^2\right)\frac{x^2}{2} \approx \frac{1}{4}x^2$	B1		Use of $\cos x = 1 - \frac{x^2}{2}$; may be derived from first principles
	$\left(\frac{1}{2} + \sqrt{3}x - x^2\right)\frac{x^2}{2} \approx \frac{1}{4}x^2$	M1A1	3	Either $k = \frac{1}{4}$ explicitly stated or expression in
	$k = \frac{1}{4}$		5	question written with k replaced by $\frac{1}{4}$
	Total		8	

Pure 3 January 2005

Q	Solution	Marks	Total	Comments
4(a)(i)	$f(x) = e^{-3x}$ $f'(x) = -3e^{-3x}$			
	$f''(x) = 9e^{-3x}$	M1A1	2	
(ii)	$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!}\dots$	M1		
	$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!}$ f(0) = 1 f'(0) = -3 f''(0) = 9 $f(x) \approx 1 - 3x + \frac{9}{2}x^2$	A1	2	AG. Use of Maclaurin from (i) required.
(b)	$\ln(1+3x) \approx 3x - \frac{(3x)^2}{2} + \frac{(3x)^3}{3}$	M1		Allow $3x - \frac{3x^2}{2} + \frac{3x^3}{3}$ (or x^3)
	$= 3x - \frac{9}{2}x^2 + 9x^3$	A1	2	CAO but allow $\frac{27}{3}x^3$
(c)	$3x - \frac{9}{2}x^{2} + 9x^{3} - (2x - 6x^{2} + 9x^{3}) = 0.1$ $1.5x^{2} + x - 0.1 = 0$	M1		
	$1.5x^2 + x - 0.1 = 0$	A1F		ft $\ln(1+3x)$ and simplification to $f(x)=0$. Correct quadratic any equivalent form
	$x = \frac{-1 + \sqrt{1.6}}{3} = 0.088$	M1A1	4	
	Total		10	

		M1		
	$2(2 - 2)^{-2}$			
f"(a	$x = 3 (2 - 3x)^{-2}$	M1A1		$-3(2-3x)^{-2}$ gets M1A0
	$x) = 18 \ (2 - 3x)^{-3}$	A1F	4	ft only on $f'(x) = -3(2-3x)^{-2}$
				SC Attempt to use quotient rule M1
				$f'(x) = \frac{3}{(2-3x)^2}$ A1A1
				$f''(x) = \frac{6x(\pm 3)(2-3x)}{(2-3x)^4} $ A1F
				ft only on earlier sign error
(ii) f(0)	$=\frac{1}{2}$ f'(0) $=\frac{3}{4}$ f''(0) $=\frac{18}{8}$	M1		use $x = 0$ in their derivatives
f (<i>x</i>)	$\approx \frac{1}{2} + \frac{3}{4}x + \frac{1}{2} \times \frac{9}{4}x^{2}$	A1	2	AG
(b)(i) cos	$2x = 1 - \frac{(2x)^2}{2}$	B1	1	or from first principles brackets possibly implied further down
(ii) $\frac{1}{2}$ +	$\frac{3}{4}x + \frac{9}{8}x^2 = 1 - 2x^2 - 2x$	M1		Maclaurin series = cos series $-2x$ condone missing $-2x$
		ml		attempt to manipulate line above to form $g(x) = 0$
25 <i>x</i>	$x^{2} + 22x - 4 = 0$	A1		
x = 0	0.15(46)	A1	4	ignore other answer
				SC if simplified quadratic omitted: x = 0.15 2/4 x = 0.154(6) 4/4
	Total		11	x = 0.10 T(0) T(T

5 (a)	$\left(\frac{1}{y}\right)^{-k} \ln\left(\frac{1}{y}\right) = -\frac{\ln y}{y^{-k}} = -y^k \ln y$ $x \to \infty, y \to 0 \text{ and } \lim y^k \ln y = 0$	M1A1 A1	3	
(b)		M1A1	5	
	=1	A1	3	
	Total		6	

Pure 5 January 2002

	Junian's 2002			
Q	Solution	Marks	Total	Comments
1	$\int_{1}^{\infty} \left(\frac{1}{x^{2}} - \frac{1}{1 + x^{2}}\right) dx = \left[-\frac{1}{x} - \tan^{-1}x\right]_{1}^{\infty}$	B1		
	$=1-\frac{\pi}{4}$	B2,1,0	3	Must be of the correct form
	Total		3	

		anual y 2002			
4	(a)	$\sin^3 x = \left(x - \frac{x^3}{6} + \frac{x^5}{120}\right)^3$			
		$= x^{3} + 3x^{2} \left(-\frac{x^{3}}{6} + \frac{x^{5}}{120} \right) + 3x \left(-\frac{x^{3}}{6} + \frac{x^{5}}{120} \right)^{2}$	M1 A2,1,0		Any form Also allow the M1A2 for
		$= x^{3} - \frac{1}{2}x^{5} + \frac{13x^{7}}{120}$	A1		$\sin^2 x = x^2 - \frac{1}{3}x^4 + \frac{2}{45}x^6$ o.e. Clearly shown
	(b)	$+\frac{15x}{120}$ sin $x^3 = x^3 - \frac{x^9}{6}$	A1	5	AG
		$\lim_{x \to 0} \frac{\sin^3 x - \sin x^3}{x^5} = \frac{-\frac{1}{2}x^5 + \frac{13x^7}{120}}{x^5}$	B1 M1		Ignore other terms here
		$=-\frac{1}{2}$	A1F	3	
		Total		8	

Q	Solution	Marks	Total	Comments
4 (a)	$x = \cos\theta dx = -\sin\theta d\theta$	M1A1		
	$I = \int -\frac{dx}{\sqrt{x}}$	A1√		sign error
	$= -2\sqrt{x} + c = -2\sqrt{\cos\theta}(+c)$	A1√	4	
(b) (i)	Clear explanation	B1	1	Essentially for 'denominator is zero
				when $\theta = \frac{1}{2}\pi$ ' stated
(ii)	$\int_{0}^{\pi/2} \frac{\sin\theta}{\sqrt{\cos\theta}} d\theta = \left[-2\sqrt{\cos\theta}\right]_{0}^{\pi/2} = 2$	M1A1√	2	
	Total		7	

7 (a)	$\cos x - 1 = 1 - \frac{x^2}{2} + \frac{x^4}{24} - 1 = -\frac{x^2}{2} + \frac{x^4}{24}$	B1	1	To earn B1, 2! and 4! must be expanded
(b)	$e^{\cos x - 1} = e^{-\frac{x^2}{2}} e^{\frac{x^4}{24}}$ or			somewhere in the solution.
	$e^{\cos x - 1} = e^{-2} e^{24}$ or $1 + \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) + \frac{1}{2}\left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2$	M1		For second method there must be two terms in each bracket for M1 i.e. use of $-\frac{x^2}{2}$ alone is not acceptable.
	$= \left(1 - \frac{x^2}{2} + \frac{x^4}{8} \dots\right) \left(1 + \frac{x^4}{24} \dots\right) \text{ or }$ substituted correctly as above	A1		2
	$1 - \frac{x^2}{2}, + \frac{x^4}{6}$	A1A1	4	AG
(c)	$\sin^2 x \approx x^2$	M1A1		[ignore higher powers of x]
	$\therefore \lim_{x \to 0} \frac{1 - e^{\cos x - 1}}{\sin^2 x} = \frac{1}{2}$	A1√	3	
	Total		8	

Q	Solution	Marks	Total	Comments
1 (a)	$\lim_{x \to \infty} x^k e^{-4x} = 0 \text{ for } k > 0$	B1	1	Withhold if evidence of incorrect reasoning
(b)	$\int_{0}^{\infty} x e^{-4x} dx = \left[\frac{x e^{-4x}}{-4}\right]_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{-4x}}{-4} dx$ $= 0$	MIAIAI Al		i.e. use of limit PI
	$+\left[-\frac{e^{-4x}}{16}\right]_{0}^{\infty}$	A1F		
	$=\frac{1}{16}$	A1	6	AG
(c)	$\int_{0} x^{2} e^{-4x} dx = \left \frac{x e^{-4x}}{-4} \right _{0} - \int_{0} \frac{2x e^{-4x}}{-4} dx$	M1A1		
	$=\frac{1}{32}$	A1F	3	
	Total		10	

	Q	Solution	Marks	Total	Comments
1	3 (a)	Explanation	E1	1	
	(b)	$\int_{-2}^{2} \frac{\mathrm{d}x}{\sqrt{4-x^2}} = \left[\sin^{-1}\frac{x}{2}\right]_{-2}^{2}$	M1A1		
		$=\sin^{-1}1 - \sin^{-1}(-1) = \pi$	A1F	3	ft $\sin^{-1}\frac{x}{4}$
		Total		4	

2(a)(i)	$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24}$	B1	1	must show 2 and 24
(ii)	$\ln(1+x)$ used	M1		
	$\ln\left(1 + \left(-\frac{x^2}{2} + \frac{x^4}{24}\right)\right)$			
	$= \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) - \frac{1}{2}\left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2$	M1		if M0 allow B1 for $-\frac{x^2}{2}$
	$= -\frac{x^2}{2}$ $-\frac{x^4}{12}$	A1		
	$-\frac{x^4}{12}$	A1	4	
(b)(i)	$\ln \sec x = -\ln \cos x$			
	$=\frac{x^2}{2}+\frac{x^4}{12}$	B1	1	
(ii)	$\lim_{x \to 0} \frac{\ln \sec x}{x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2} + \frac{x^4}{12}}{x^2}$			if $-\frac{2}{x^2} - \frac{12}{x^4}$ used give zero
	$= \lim_{x \to 0} \frac{1}{2} + \frac{x^2}{12}$	M 1		
	$=\frac{1}{2}$	AlF	2	
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)	Put $y=1+x$ $dy=dx$	M1		Alternative by parts:
	$I = \int \frac{y-1}{y^2} dy$	Al		$-\frac{x}{1+x} + \int \frac{1}{1+x} dx M1A1A1$
	$= \int \left(\frac{1}{y} - \frac{1}{y^2}\right) dy$	ml		$-\frac{x}{1+x} + \ln(1+x) \text{ A1}$ substitution of limits A2, 1, 0
	$=\left[\ln y + \frac{1}{y}\right]$	A1F		
	$=\left[\ln(1+x)+\frac{1}{1+x}\right]_{0}^{k}$			
	$= \ln(1+k) + \frac{1}{1+k} - 1$	A1F		
	$= \ln(1+k) - \frac{k}{1+k}$	Al	6	AG
(b)	As $k \to \infty$, $\ln(1+k) \to \infty$	B1		
	$1+k$ As $k \to \infty$, $\ln(1+k) \to \infty$ but $\frac{k}{1+k} \to 1$	B1		
	∴ does not exist	B1	3	dep on at least one of the previous two B marks earned
	Total		9	

2 (a)	$u = 1 - x^{2} \qquad du = -2xdx$ or $x = \sin\theta \qquad dx = \cos\theta d\theta$	M1		
	or $x = \sin \theta$ $dx = \cos \theta d\theta$ $I = \int \frac{-du}{2u^{\frac{1}{2}}}$ or $I = \int \sin \theta d\theta$	A1		Limits not needed here
	$=\left[-u^{\frac{1}{2}}\right]$ or $\left[-\cos\theta\right]$	A1F		Limits not needed
	$= 1 - (1 - a^2)^{\frac{1}{2}}$	A1F	4	ft provided $p\left(1-\left(1-a^2\right)^{\frac{1}{2}}\right)$ where p is an integer
(b)	When $a = 1$, denominator is zero	E1	1	
(c)	<i>a</i> = 1, <i>I</i> = 1	M1A1F	2	
	Total		7	

Q	Solution	Marks	Total	Comments
4 (a)(i)	$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24}$	B1		Simplification of factorials continued sensibly
	$\frac{1}{\cos x} = \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)^{-1}$	M1		
	$=1 + \left(\frac{x^2}{2} - \frac{x^4}{24}\right) + \left(\frac{x^2}{2} - \frac{x^4}{24}\right)^2$	M1		
	$=1+\frac{x^2}{2}$	Al		AG
	$+\frac{5x^4}{24}$	A1	5	AG
(ii)	$\tan x = \left(x - \frac{x^3}{6} + \frac{x^5}{120}\right) \left(1 + \frac{x^2}{2} + \frac{5x^4}{24}\right)$	M1A1		
	$=x+\frac{x^3}{3}$	A1F		Incorrect sin series
	$+\frac{2x^5}{15}$ or $\frac{16x^5}{120}$	A1F	4	
(b)	$\lim\left(\frac{\tan 2x - 2x}{\tan x - x}\right) = \frac{2x + \frac{8x^3}{3} + \frac{64x^5}{15} - 2x}{x + \frac{x^3}{3} + \frac{2x^5}{15} - x}$	M1A1F		
	$=\frac{\frac{8}{3} + O(x^2)}{\frac{1}{3} + O(x^2)}$	A1F		
	= 8	A1F	4	
	Total		13	

Q	Solution	Marks	Total	Comments
1 (a)		M1A1		Whole Q depends on the PFs
	$I = \ln x - \ln(x+4)(+c)$ $I = [\ln x - \ln(x+4)]_{0}^{1}$	A1F	3	ft incorrect PFs
(b)(i)	$I = [\ln x - \ln(x+4)]_0^1$	B1		attempt to put in limits
	$\ln x \to -\infty$ as $x \to 0$. no finite limit	E1	2	
(ii)	$\frac{x}{x+4} \rightarrow 1 \text{ as } x \rightarrow \infty$	E1		a clear explanation is required
	$\therefore I = \ln 1 - \ln \frac{1}{5}$	M1		substitution of limits
	$=\ln 5$	A1F	3	O.E; no ln 1 in answer
	Total		8	

Pure 5 June 2004

	-			
2	$\cos^k x = \left(1 - \frac{x^2}{2} \dots\right)^k$	M1		
	$=1-\frac{kx^2}{2}\dots$	A1		ignore higher powers of x
	$\lim_{x \to 0} \frac{1 - \left(1 - \frac{kx^2}{2}\right)}{x^2} = 4$	M1		award only if some function of <i>k</i> appears
	<i>k</i> = 8	A1F	4	
	Total		4	

Q	Solution	Marks	Total	Comments
1(a)	$\sin 2x = 2x - \frac{8x^3}{6}$	B1	1	Ignore extra terms
	Use of $\left(1 - \frac{x^2}{2}\right)$ and $\left(2x - \frac{8x^3}{6}\right)$	M1		
	$L = \lim_{x \to 0} \frac{2x\left(1 - \frac{x^2}{2}\right) - \left(2x - \frac{8x^3}{6}\right) + 0(x^5)}{x^3}$	A1F		Condone $0(x^5)$ missing
	$=\lim_{x\to 0}\frac{-x^3+\frac{8x^3}{6}+0(x^5)}{x^3}$	A1F		
	$=\frac{1}{3}$	A1F	4	
	Total		5	

3(a)	$I = \left[2\sqrt{x}\ln x\right]_{k}^{1} - \int_{k}^{1} 2\sqrt{x}\frac{1}{x}dx$	M1A1 A1		
	$\left[-4\sqrt{x}\right]_{k}^{1}$	A1F		
	$=4\left(\sqrt{k}-1\right)-2\sqrt{k}\ln k$	A1	5	AG
(b)	Exists since $\sqrt{k} \ln k \to 0$ as $k \to 0$	E1		Clear explanation
	value is – 4	A1F	2	If M0 earlier, allow B1 for -4
	Total		7	

Pure 5 June 2005

I ult 5 Jul					
3	$\ln\left(1+x\right) \simeq x - \frac{x^2}{2}$				
	and $\cos x \approx 1 - \frac{x^2}{2}$ both used	M1			
	$\lim_{x \to 0} \frac{x \ln(1+x)}{1 - \cos x} \simeq \lim_{x \to 0} \frac{x^2 + 0(x^3)}{\frac{x^2}{2} + 0(x^4)}$	A1		ignore errors in powers of $x > 2$	
	Dividing by x^2 , ie $\lim_{x \to 0} \frac{1 + 0(x)}{\frac{1}{2} + 0(x^2)}$	m1		Ы	
	= 2	A1F	4		
	-			Alternative method:	
				L'Hôpital's rule used twice	M1
				Correct differentiation	Al
				Putting $x = 0$	m1
				(allow this m1 if $x = 0$ gives a	
				finite limit)	
				Result 2	A1F
	Total		4		
			-		

5(a)	$u = \ln x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$	B1		
	$\mathbf{I} = \int \frac{\mathrm{d}u}{u} = \ln u = \ln(\ln x) + c$	M1A1	3	M1 for $\ln u$ A1 for $\ln(\ln x)$
(b)(i)	Clear reason why improper	E1	1	condone omission of <i>c</i>
(ii)	When $x = 1$, $\ln(\ln 1) = \ln 0$ and does not exist Total	E2	2 6	E2 for clear reasoning, E1 if vague

Polar Coordinates

Pure 5 June 2001

Q	Solution	Marks	Total	Comments
1 (a)	$\sin ax = ax - \frac{a^3 x^3}{3!} + \frac{a^5 x^5}{5!}$	B1	1	do not accept $(ax)^3$ unless multiplied out later
(b)	Substitution $a = 3, 2$	M 1		
	$\text{Limit} = \lim_{x \to 0} \frac{3\left(x - \frac{x^3}{6}\right) - \left(3x - \frac{27x^3}{6}\right) + 0\left(x^5\right)}{2\left(x - \frac{x^3}{6}\right) - \left(2x - \frac{8x^3}{6}\right) + 0\left(x^5\right)}$	A1√ A1√		for numerator for denominator
	= 4	M1		for cancelling stems and $\div x^3$
		A1√	5	for accurate work and the answer
	Total		6	

Q	Solution	Marks	Total	Comments
4 (a)(i)	$y = 2(1 + \cos\theta)\sin\theta \rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos\theta + 2\cos2\theta$	M1A1		
	$\cos\theta + 2\cos^2\theta - 1 = 0$	M1A1		
	$(2\cos\theta - 1)(\cos\theta + 1) = 0$ $\therefore \cos\theta = \frac{1}{2}, \theta = \frac{\pi}{3}$	A1	5	
(ii)	<i>P</i> is $\left(3,\frac{\pi}{3}\right)$; <i>Q</i> is $\left(3,-\frac{\pi}{3}\right)$	B1B1	2	
(iii)	$r\cos\theta = 1.5$	M1 A1	2	for OA
(b)(i)	Area of $\triangle OPQ = \frac{1}{2} \times 9 \sin \frac{2\pi}{3}$	M1		
	$=\frac{9\sqrt{3}}{4}$	A1	2	AG
(ii)	Area A = area of R + area of $\triangle OPQ$	M1		
	$= 2 \times \frac{1}{2} \int_0^{\frac{\pi}{3}} 4 (1 + \cos \theta)^2 \mathrm{d}\theta$	A1		
	Use of $\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta)$	M1		
	Area A = $4 \int_0^{\frac{\pi}{3}} \left[(1 + 2\cos\theta) + \frac{1}{2} (1 + \cos 2\theta) \right] d\theta$	A1√		
	$= \left[6\theta + 8\sin\theta + \sin 2\theta \right]_0^{\frac{\pi}{3}}$	A1√		
	$=2\pi+\frac{9\sqrt{3}}{2}$	A1√		
	Area R = $2\pi + \frac{9\sqrt{3}}{4}$	A1	7	AG
	Total		18	

0	Solution	Marks	Total	Comments
5 (a)(i)	<i>r</i> values 1, 2	B1		
	Points shown $\left(1, -\frac{\pi}{2}\right) \left(2, -\frac{\pi}{6}\right)$	B1F	2	or $(0,-1)$ $(2\cos\frac{\pi}{6},-1)$
				Allow approximate positions
(ii)	Use of geometry to find <i>y</i> values	M1A1	2	
(iii)	Symmetrical about $\theta = \frac{\pi}{2}$	B1		
	Strategic points to be labelled or tabulated Dent at A	B1 B1	3	
	(0, 5) $(-3, 0)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$ $(0, -1)$			
(b)	$A = \frac{1}{2} \int_0^{2\pi} (3 + 2\sin\theta)^2 \mathrm{d}\theta$	M1		
	$=\frac{1}{2}\int_0^{2\pi}(9+12\sin\theta+4\sin^2\theta)\mathrm{d}\theta$	A1		
	Use of $\cos 2\theta = 1 - 2\sin^2 \theta$	ml		If m0, allow B1 for integrating
	$A = \frac{1}{2} \int_{0}^{2\pi} (1 + 12\sin\theta - 2\cos 2\theta) d\theta$	A1F		$9+12\sin\theta$ correctly
	$=\frac{1}{2}\left[11\theta-12\cos\theta-\sin2\theta\right]_0^{2\pi}$	A1F		
	$=11\pi$	A1F	6	For incorrect limits penalise here
(c)	OP, OQ, OM, ON : any two	M1A1		
	Other two; simplified	A1A1		
	$=9-4\sin^2\theta+9-4\cos^2\theta$	A1		
	=14	A1	6	
	Total		19	

Q	Solution	Marks	Total	Comments
1	$A = \frac{1}{2} \int_{0}^{2\pi} a^2 \sin^2 \frac{1}{2} \theta \mathrm{d}\theta$	M1A1B1		M1 for $\int \frac{1}{2} r^2 d\theta$ used
				A1 if used correctly
				B1 for limits
				M0 if $\cos 2\theta$ used
	$=\frac{1}{2}\int_{0}^{2\pi}a^{2}\left(\frac{1-\cos\theta}{2}\right)\mathrm{d}\theta$	M1		
	$= \left[\frac{1}{2}a^{2}\left(\frac{\theta}{2} - \frac{\sin\theta}{2}\right)\right]_{0}^{2\pi}$	A1		CAO
	$=\frac{1}{2}\pi a^2$	A1√	6	
	Total		6	

0				
3 (a)	$\cos\theta = -, \sin\theta = -$ r r	B1	1	
(b) (i)	$r = 2\frac{x}{r} - 4\frac{y}{r}$	M1		
	use of $x^{2} + y^{2} = r^{2}$ $x^{2} + y^{2} = 2x - 4y$	M1	2	
		A1 M1A1√	3	
(ii)	$(x-1)^2 + (y+2)^2 = 5$	MIAIV		
	$(x-1)^{2} + (y+2)^{2} = 5$ Centre (1, -2), radius $\sqrt{5}$	A1√	3	
	Total		7	

	Total		10	
	$\alpha = \frac{4\pi}{9}$	A1F	3	α must be in range $\frac{\pi}{4} - 2\pi$
	$\frac{1}{2\alpha} = \frac{2}{\pi} - \frac{1}{\pi} + \frac{1}{8\pi}$	A1		
(ii)	$\frac{2}{\pi} - \frac{1}{2\alpha} = \frac{1}{2} \left(\frac{2}{\pi} - \frac{1}{4\pi} \right)$	M1		
	$=\frac{2}{\pi}-\frac{1}{2\alpha}$	Al	4	AG
	$= \left[-\frac{1}{2\theta} \right]_{\frac{\pi}{4}}^{\alpha}$	A1F		Provided of the form $\frac{k}{\theta}$
(b)(i)	$A = \frac{1}{2} \int_{\frac{\pi}{4}}^{\alpha} \frac{1}{\theta^2} \mathrm{d}\theta$	M1A1		
	Steadily decreasing in distance from the origin	B1	3	
	Going the right way round the origin	B1		
2 (a)	Sketch: Correct starting and finishing points	B1		

$\begin{aligned} 6(\mathbf{a})(\mathbf{i}) & x^2 + y^2 = r^2 = 16 \qquad \therefore r = 4 \\ \mathbf{i}) & r\cos\theta r\sin\theta = 4 \\ r^2\sin 2\theta = 8 \\ r^2 = 8\csc 2\theta \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \\ r^2 = 8\csc 2\theta \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{B} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{B} & \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{A} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf$	Q	Solution	Marks	Total	Comments
$r^{2} \sin 2\theta = 8$ $r^{2} = 8 \csc 2\theta$ A1 A1 A A A A A A A A A A A A A A A A	6(a)(i)	$x^2 + y^2 = r^2 = 16$ $\therefore r = 4$	B1	1	needs some explanation
$r^{2} = 8 \operatorname{cosec} 2\theta$ A1 $\frac{x^{2}}{8} = 8 \operatorname{cosec} 2\theta$ A1 $\frac{x^{2}}{8} = 8 \operatorname{cosec} 2\theta$ A1 $\frac{x^{2}}{8} = 16 \text{ or } 8 \operatorname{cos} 2\theta = 16$ M1 $\sin 2\theta = \frac{1}{2}$ A1 $2\theta = \frac{\pi}{6}, \theta = \frac{\pi}{12}$ A1 $2\theta = \frac{\pi}{6}, \theta = \frac{\pi}{12}$ B1 4 $\frac{x^{2}}{12} = \frac{8\pi}{6}, \theta = \frac{5\pi}{12}$ B1 4 $\frac{x^{2}}{12} = \frac{8\pi}{6}, \theta = \frac{5\pi}{12}$ B1 4 $\frac{x^{2}}{12} = \frac{8\pi}{6}, \theta = \frac{5\pi}{12}$ B1 5 $\frac{x^{2}}{12} = \frac{5\pi}{6}, \theta = \frac{5\pi}{12}$ A1 $\frac{x^{2}}{12} = \frac{5\pi}{6}, \theta = \frac{5\pi}{12}$ B1 4 $\frac{x^{2}}{12} = \frac{5\pi}{12}$ A1 $\frac{\pi}{12} = \frac{5\pi}{12}$ A1 $$	(ii)	$r\cos\theta \ r\sin\theta = 4$	M1		
(b) At points of intersection $\frac{8}{\sin 2\theta} = 16 \text{ or } 8\cos 2\theta = 16 \text{ MI}$ $\sin 2\theta = \frac{1}{2}$ $2\theta = \frac{\pi}{6}, \theta = \frac{\pi}{12}$ $A1$ withhold if calculator used or $2\theta = \frac{5\pi}{6}, \theta = \frac{5\pi}{12}$ B1 4 (c) Area of sector $AOB = \frac{1}{2}4^2 \left(\frac{5}{12}\pi - \frac{1}{12}\pi\right)$ $= \frac{8\pi}{3}$ Area between $xy = 4$ and lines OA, OB $= \int \frac{\frac{5\pi}{12}}{\frac{\pi}{12}} \frac{1}{2}r^2 d\theta = \frac{\frac{5\pi}{12}}{\frac{5\pi}{12}} \operatorname{cosec} 2\theta d\theta$ M1 Find treat missing $\frac{1}{2}$ as A-error ignore limits here $= -\frac{4}{2}\ln(\csc 2\theta + \cot 2\theta)$ $= -2\ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ $= -2\ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ M1 For putting limits into their integral (not the integral (no		$r^2\sin 2\theta = 8$	A1		
$\begin{vmatrix} \frac{8}{\sin 2\theta} = 16 \text{ or } 8\cos 2\theta = 16 \\ \sin 2\theta = \frac{1}{2} \\ 2 \\ \theta = \frac{\pi}{6}, \theta = \frac{\pi}{12} \\ \Omega = 2\theta = \frac{\pi}{6}, \theta = \frac{5\pi}{12} \\ \theta = \frac{5\pi}{6}, \theta = \frac{5\pi}{12} \\ \theta = \frac{5\pi}{6}, \theta = \frac{5\pi}{12} \\ \theta = \frac{8\pi}{3} \\ Area \text{ of sector } AOB = \frac{1}{2}4^2 \left(\frac{5}{12}\pi - \frac{1}{12}\pi\right) \\ = \frac{8\pi}{3} \\ Area \text{ between } xy = 4 \text{ and lines } OA, OB \\ \theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 2r^2 d\theta = \frac{\frac{5\pi}{12}}{\frac{12}{12}} 4cosec 2\theta d\theta \\ \theta = -\frac{4}{2}\ln(\csc 2\theta + \cot 2\theta) \\ \theta = -2\ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right) \\ + 2\ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right) \\ \theta = -2\ln\left(2 - \sqrt{3}\right) + 2\ln\left(2 + \sqrt{3}\right) \\ \theta = 2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ A1F \end{vmatrix}$ $(c) Area of sector AOB = \frac{1}{2}4^2 \left(\frac{5\pi}{2}\pi - \frac{1}{12}\pi\right) \\ H1 \\ \theta = -2\ln\left(2 - \sqrt{3}\right) + 2\ln\left(2 + \sqrt{3}\right) \\ H1 \\ \theta = 2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \\ H1 \\ \theta = -2\ln\left(\frac{2 + \sqrt{3}}{$		$r^2 = 8 \operatorname{cosec} 2\theta$	A1	3	AG
$ \begin{aligned} \sin 2\theta &= \frac{1}{2} \\ \sin 2\theta &= \frac{1}{2} \\ 2\theta &= \frac{\pi}{6}, \theta &= \frac{\pi}{12} \\ 0r &2\theta &= \frac{5\pi}{6}, \theta &= \frac{5\pi}{12} \\ \theta &= \frac{5\pi}{6}, \theta &= \frac{5\pi}{12} \\ \theta &= \frac{5\pi}{6}, \theta &= \frac{5\pi}{12} \\ \theta &= \frac{5\pi}{12} \\ \theta &= \frac{8\pi}{3} \\ Area of sector AOB &= \frac{1}{2} 4^2 \left(\frac{5}{12}\pi - \frac{1}{12}\pi\right) \\ &= \frac{8\pi}{3} \\ Area between xy = 4 \text{ and lines } OA, OB \\ \theta &= \int \frac{5\pi}{12} r^2 d\theta &= \int \frac{5\pi}{12} 4cosec \ 2\theta \ d\theta \\ ft incorrect \ \frac{5\pi}{12} \\ reat missing \ \frac{1}{2} as \ A-error \\ ignore limits here \\ or \ \frac{4}{2} \ln (cosec \ \frac{5\pi}{6} + \cot \ \frac{5\pi}{6}) \\ &+ 2 \ln \left(cosec \ \frac{\pi}{6} + \cot \ \frac{\pi}{6} \right) \\ h &= -2\ln \left(2 - \sqrt{3} \right) + 2 \ln \left(2 + \sqrt{3} \right) \\ \theta &= 2\ln \left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}} \right) \\ \theta &= 1 \end{aligned} $	(b)	At points of intersection			
$2\theta = \frac{\pi}{6}, \theta = \frac{\pi}{12}$ AI withhold if calculator used $2\theta = \frac{\pi}{6}, \theta = \frac{\pi}{12}$ AI withhold if calculator used $0r \ 2\theta = \frac{5\pi}{6}, \theta = \frac{5\pi}{12}$ BI 4 (c) Area of sector $AOB = \frac{1}{2} 4^2 \left(\frac{5}{12}\pi - \frac{1}{12}\pi\right)$ $= \frac{8\pi}{3}$ BIF Area between $xy = 4$ and lines OA, OB $= \int \frac{\frac{5\pi}{12}}{\frac{\pi}{12}} 2r^2 d\theta = \int \frac{\frac{5\pi}{12}}{\frac{\pi}{12}} 4cosec \ 2\theta \ d\theta$ MI treat missing $\frac{1}{2}$ as A-error ignore limits here $= -\frac{4}{2} \ln(\csc 2\theta + \cot 2\theta)$ AI $= -2 \ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ $+ 2 \ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ mI $= -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right)$ AIF $= 2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ AIF		$\frac{8}{\sin 2\theta} = 16 \text{ or } 8\cos 2\theta = 16$	M1		
$\begin{array}{ c c } & \operatorname{Or} 2\theta = \frac{5\pi}{6}, \qquad \theta = \frac{5\pi}{12} \\ & \operatorname{Area of sector} AOB = \frac{1}{2} 4^2 \left(\frac{5}{12} \pi - \frac{1}{12} \pi \right) \\ & = \frac{8\pi}{3} \\ & \operatorname{Area between } xy = 4 \text{ and lines } OA, OB \\ & = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2} r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4 \operatorname{cosec} 2\theta \mathrm{d}\theta \\ & = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2} r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4 \operatorname{cosec} 2\theta \mathrm{d}\theta \\ & = -\frac{4}{2} \ln(\operatorname{cosec} 2\theta + \cot 2\theta) \\ & = -2 \ln\left(\operatorname{cosec} \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right) \\ & + 2 \ln\left(\operatorname{cosec} \frac{\pi}{6} + \cot \frac{\pi}{6}\right) \\ & = -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right) \\ & = 2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \end{array} \qquad \text{MI}$		2	A1		
(c) Area of sector $AOB = \frac{1}{2} 4^2 \left(\frac{5}{12}\pi - \frac{1}{12}\pi\right)$ $= \frac{8\pi}{3}$ B1F Area between $xy = 4$ and lines OA , OB $= \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2}r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4cosec \ 2\theta \ d\theta$ M1 $= -\frac{4}{2} \ln(\csc 2\theta + \cot 2\theta)$ A1 $= -2 \ln\left(\csc 2\theta + \cot 2\theta\right)$ A1 $= -2 \ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ H1 $= -2 \ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ H1 $= -2 \ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ A1 $= -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right)$ A1F $= 2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1F			A1		withhold if calculator used
$= \frac{8\pi}{3}$ BIF Area between $xy = 4$ and lines OA, OB $= \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2}r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4cosec \ 2\theta \ d\theta$ M1 $= -\frac{4}{2}\ln(\csc 2\theta + \cot 2\theta)$ A1 $= -2\ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ H1 $= -2\ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ M1 $= -2\ln\left(\cos ec \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ M1 $= -2\ln\left(2 - \sqrt{3}\right) + 2\ln\left(2 + \sqrt{3}\right)$ A1F $= 2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1F $= 2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1F $= -2\ln\left(2 + \sqrt{3}\right)$ A1F		Or $2\theta = \frac{5\pi}{6}$, $\theta = \frac{5\pi}{12}$	B1	4	
Area between $xy = 4$ and lines OA , OB $= \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2} r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4cosec \ 2\theta \ d\theta$ $= -\frac{4}{2} \ln(\csc 2\theta + \cot 2\theta)$ $= -2 \ln\left(\csc 2\theta + \cot 2\theta\right)$ $= -2 \ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ $= -2 \ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ $= -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right)$ $= -2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ Alf	(c)	Area of sector $AOB = \frac{1}{2} 4^2 \left(\frac{5}{12} \pi - \frac{1}{12} \pi \right)$			
$= \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2} r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4cosec \ 2\theta \ d\theta \qquad M1$ $= -\frac{4}{2} \ln(\csc 2\theta + \cot 2\theta) \qquad A1$ $= -2 \ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ $+ 2 \ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right) \qquad m1$ $= -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right) \qquad A1F$ $= 2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \qquad A1F$		$=\frac{8\pi}{3}$	B1F		ft incorrect $\frac{5\pi}{12}$
$= -\frac{4}{2} \ln(\operatorname{cosec} 2\theta + \cot 2\theta)$ $= -2 \ln\left(\operatorname{cosec} \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ $+ 2 \ln\left(\operatorname{cosec} \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ $= -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right)$ $= 2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1 $= 2 \ln\left(2 + \sqrt{$		Area between $xy = 4$ and lines <i>OA</i> , <i>OB</i>			
$= -\frac{4}{2}\ln(\csc 2\theta + \cot 2\theta)$ $= -2\ln\left(\csc \frac{5\pi}{6} + \cot \frac{5\pi}{6}\right)$ $+ 2\ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right)$ $= -2\ln\left(2 - \sqrt{3}\right) + 2\ln\left(2 + \sqrt{3}\right)$ $= 2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1 $= 2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1 $= -2\ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$ A1 $= -2\ln\left($		$= \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{2} r^2 d\theta = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 4 \operatorname{cosec} 2\theta \mathrm{d}\theta$	M1		2
$+2 \ln\left(\csc \frac{\pi}{6} + \cot \frac{\pi}{6}\right) \qquad \text{m1}$ For putting limits into their integral (not and $\frac{\pi}{2}$ for limits) $= -2 \ln\left(2 - \sqrt{3}\right) + 2 \ln\left(2 + \sqrt{3}\right) \qquad \text{A1F}$ $= 2 \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right) \qquad \text{A1F}$		$= -\frac{4}{2}\ln(\csc 2\theta + \cot 2\theta)$	A1		
$= -2\ln(2-\sqrt{3}) + 2\ln(2+\sqrt{3})$ $= 2\ln\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)$ A1F A1F		$= -2\ln\left(\operatorname{cosec}\frac{5\pi}{6} + \cot\frac{5\pi}{6}\right)$			
$= 2\ln\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right) $ A1F		+ 2 $\ln\left(\operatorname{cosec}\frac{\pi}{6} + \cot\frac{\pi}{6}\right)$	ml		For putting limits into their integral (not 0 and $\frac{\pi}{2}$ for limits)
		$= -2\ln(2-\sqrt{3})+2\ln(2+\sqrt{3})$	A1F		_
$= 4\ln(2+\sqrt{3}) $ A1 7		$= 2\ln\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)$	A1F		
		$= 4\ln(2+\sqrt{3})$	A1	7	
Total 15		Total		15	

Pure 5 January 2004						
Solution	Marks	Total	Comments			
$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} e^{2k\theta} d\theta$	M1A1		A1 for $e^{2k\theta}$			
$=\frac{1}{4k}\left[e^{2k\theta}\right]_{\theta_1}^{\theta_2}$	A1					
$=\frac{1}{4k}\left[\mathrm{e}^{2k\theta_2}-\mathrm{e}^{2k\theta_1}\right]$						
$=\frac{1}{4k}(r_2^2-r_1^2)$	A1	4	AG			
at $K, e^{\theta} = 2$	M 1					
$\theta = \ln 2$						
<i>K</i> is (2, ln 2)	A1	2	Accept (2, 0.69(3))			
Area of sector of circle is $\frac{1}{2} \times 2^2 \ln 2$						
=2ln2	B1					
Area under curve by (a) is $\frac{1}{4}(2^2 - 1^2)$	M1					
$=\frac{3}{4}$	A1					
Shaded area = $2 \ln 2 - \frac{3}{4}$	M1A1F	5	M0 if added or subtracted the wrong way round ft simple slips			
Total		11				
	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} e^{2k\theta} d\theta$ $= \frac{1}{4k} \left[e^{2k\theta} \right]_{\theta_1}^{\theta_2}$ $= \frac{1}{4k} \left[e^{2k\theta_2} - e^{2k\theta_1} \right]$ $= \frac{1}{4k} \left(r_2^2 - r_1^2 \right)$ at $K, e^{\theta} = 2$ $\theta = \ln 2$ $K \text{ is } (2, \ln 2)$ Area of sector of circle is $\frac{1}{2} \times 2^2 \ln 2$ $= 2\ln 2$ Area under curve by (a) is $\frac{1}{4} \left(2^2 - 1^2 \right)$ $= \frac{3}{4}$ Shaded area = $2 \ln 2 - \frac{3}{4}$	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} e^{2k\theta} d\theta$ $M1A1$ $= \frac{1}{4k} \left[e^{2k\theta} \right]_{\theta_1}^{\theta_2}$ $= \frac{1}{4k} \left[e^{2k\theta_2} - e^{2k\theta_1} \right]$ $= \frac{1}{4k} \left(r_2^2 - r_1^2 \right)$ $at K, e^{\theta} = 2$ $\theta = \ln 2$ $K \text{ is } (2, \ln 2)$ A1 Area of sector of circle is $\frac{1}{2} \times 2^2 \ln 2$ $= 2\ln 2$ A1 Area under curve by (a) is $\frac{1}{4} \left(2^2 - 1^2 \right)$ $= \frac{3}{4}$ A1 M1A1F	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} e^{2k\theta} d\theta$ $= \frac{1}{4k} \left[e^{2k\theta} \right]_{\theta_1}^{\theta_2}$ $= \frac{1}{4k} \left[e^{2k\theta_2} - e^{2k\theta_1} \right]$ $= \frac{1}{4k} \left[e^{2k\theta_1} - e^{2k\theta_1} - e^{2k\theta_1} \right]$ $= \frac{1}{4k} \left[e^{2k\theta_1} - e^{2k\theta_1} - e^{2k\theta_1} - e^{2k\theta_1} \right]$ $= \frac{1}{4k} \left[e^{2k\theta_1} - e^$			

$2 = r + r\cos\theta$	M1		
= r + x	B1		i.e. $x = r \cos \theta$ used relevantly
2-x=r	A1		
$(2-x)^2 = x^2 + y^2$	M1		For relevant use of $r = \sqrt{x^2 + y^2}$
$4 - 4x + x^2 = x^2 + y^2$	A1		
$y^2 = 4(1-x)$	A1F	6	$Or y^2 = 4 - 4x o.e.$
			ft simple arithmetical errors only
Total		6	
	= r + x 2 - x = r $(2 - x)^{2} = x^{2} + y^{2}$ $4 - 4x + x^{2} = x^{2} + y^{2}$ $y^{2} = 4(1 - x)$	= r + x BI A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	

6(a)	$R_1 + R_2 = \frac{1}{2} \int_{-(\pi - \alpha)}^{\alpha} 4(1 - \cos \theta)^2 d\theta$	M1A1		M1 for use of formula A1 for correct limits (appearing at any point)
	$(1-\cos\theta)^2 = 1-2\cos\theta + \cos^2\theta$	A1		
	$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ used	M1		
	$I = \left[3\theta - 4\sin\theta + \frac{\sin 2\theta}{2}\right]$	A1F		
	a = 3, b = -8	A1A1	7	CAO
(b)	$OA = 2 \ (1 - \cos \alpha)$	B1		
	$OB = 2(1 - \cos(-\pi + \alpha))$	B1		Could use $\pi + \alpha$
	AB = 4	B1	3	
	Total		10	

Q	Solution	Marks	Total	Comments
5(a)	$\frac{2}{\cos\theta} = 3 + 2\cos\theta$	M1		or corresponding results in r
	$2\cos^2\theta + 3\cos\theta - 2 = 0$	Al		
	$(2\cos\theta-1)(\cos\theta+2)=0$	ml		
	$\cos\theta = \frac{1}{2}, \ \cos\theta \neq -2$	Al		
	at A, $\theta = \frac{\pi}{3}$	A1		
	A and B are $\left(4, \pm \frac{1}{3}\pi\right)$	A1	6	Accept $\left(4, \frac{5\pi}{3}\right)$
(b)	Area S bounded by C, OA, OB			
	$S = \frac{1}{2} \int_{\frac{\pi}{-3}}^{\frac{\pi}{3}} (3 + 2\cos\theta)^2 d\theta$	<u>M</u> 1		Ignore limits here
	$= \int_0^{\frac{\pi}{3}} \left(9 + 12\cos\theta + 4\cos^2\theta\right) \mathrm{d}\theta$	A1		
	Use of $\cos 2\theta = 2\cos^2 \theta - 1$	ml		For an attempt to express $\cos^2 \theta$ in terms of $\cos 2\theta$
	$S = \int_0^{\frac{\pi}{3}} (11 + 12\cos\theta + 2\cos 2\theta) d\theta$	A1F		
	$= \left[11\theta + 12\sin\theta + \sin 2\theta\right]_{0}^{\frac{\pi}{3}}$	A1F		
	$=\frac{11\pi}{3}+\frac{13\sqrt{3}}{2}$	A1F		Correct limits needed here
	Area of $\triangle OAB = \frac{1}{2}4^2 \sqrt{\frac{3}{2}} = 4\sqrt{3}$	M1A1		Allow M1 for $\left[2\tan\theta\right]_{\frac{\pi}{3}}^{\frac{\pi}{3}}$
	Area of $R = \frac{11\pi}{3} + \frac{13\sqrt{3}}{2} - 4\sqrt{3}$			
	$=\frac{11\pi}{3}+\frac{5\sqrt{3}}{2}$	A1F	9	
	Total		15	

4(a)(i)	$\sin 3\theta = 0$ when $\theta = 0$, $\frac{1}{3}\pi$	B1B1	2	
(ii)	Area of loop = $\frac{1}{2} \int_{0}^{\frac{1}{3}\pi} \sin^2 3\theta \mathrm{d}\theta$	M1		ignore limits
	$= \frac{1}{2} \int_{0}^{\frac{1}{3}\pi} \frac{1}{2} (1 - \cos 6\theta) d\theta$	m1		
	$=\frac{1}{4}\left[\theta-\frac{1}{6}\sin 6\theta\right]_{0}^{\frac{1}{3}\pi}$	A1		
	$=\frac{1}{12}\pi$	A1	4	AG
(b)	Area of $R = \frac{1}{3} \left(\pi \times 1^2 - 3 \times \frac{\pi}{12} \right)$	B1B1		B1 for each part, ie for two relevant areas to be subtracted
	$=\frac{1}{4}\pi$	B 1	3	OE; must be correct
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)(i)	$4x^2 + 4y^2 = x^2 - 4x + 4$	M1		or any correct method
	$4(x^{2} + y^{2}) = (2 - x)^{2}$ Use of $x = r \cos \theta$, $x^{2} + y^{2} = r^{2}$	A1	2	AG
(ii)	Use of $x = r \cos \theta$, $x^2 + y^2 = r^2$	M1M1		
	$4r^2 = \left(2 - r\cos\theta\right)^2$	A1		
	$2r = \pm \big(2 - r\cos\theta\big)$	A1		condone omission of \pm sign
	$4r^{2} = (2 - r\cos\theta)^{2}$ $2r = \pm (2 - r\cos\theta)$ $\frac{2}{r} = 2 + \cos\theta$	m1A1	6	AG
(b)	If $\theta = \alpha$ at P , $\theta = \alpha + \pi$ at Q	M1A1		or $x - \pi$ at Q
	$\frac{2}{OP} = 2 + \cos \alpha$ $\frac{2}{OQ} = 2 + \cos (\alpha + \pi)$	M1		
	$=2-\cos\alpha$	A1		
	$\frac{2}{OP} + \frac{2}{OQ} = 4$ $\frac{1}{OP} + \frac{1}{OQ} = 2$	M1		
	$\frac{1}{OP} + \frac{1}{OQ} = 2$	A1	6	AG
	Total		14	

Pure 3(B) January 2002

Question Number	Solution	Marks	Total Marks	Comments
and part				
10(a)(i)	$\max = 6$	B1		π
10(1)(1)		B1		or $-\frac{\pi}{2}$
	when $\theta = -\frac{\pi}{2}$			
	min = 2	B1		
	when $\theta = 0$	B1	4	or π
(ii)	\rightarrow Initial line			
	()			
	\bigcirc	DI		
	graph 'correct' $0 < \theta < \frac{\pi}{2}$	B1		or any other quadrant condone cusps
	symmetry about $\theta = 0$ or $\theta = \frac{\pi}{2}$	B1		
	good attempt at graph	B1	3	
(b)(i)	$2+4(1-\cos^2\theta)=5\cos\theta$	M1		
	$4c^2 + 5c - 6 = 0$			
	(4c-3)(c+2) = 0	m1		factors or attempt to solve
	$2 + 4(1 - \cos^2 \theta) = 5\cos \theta$ $4c^2 + 5c - 6 = 0$ $(4c - 3) (c + 2) = 0$ $\Rightarrow \cos \theta = \frac{3}{4}$	A1	3	
(ii)	$r = \frac{15}{4} = 3.75$	B1√		
	$\theta = \cos^{-1}(\frac{3}{4}) = 0.72$	B1		
	$\theta = \cos^{-1}\left(\frac{3}{4}\right) = 0.72$ $\theta = -\cos^{-1}\left(\frac{3}{4}\right)$	B1√	3	ft their $\cos \theta$ in either equation,
				coords or $[r, \theta]$ separately
	Total		13	

Question	June 2002 Solution	Marks	Total	Comments
Number	Solution	Marks	marks	Comments
and part				
6(a)(i)	Max $r = 4$	B1		or <i>r</i> ≤ 4
	Min r = 0	B1	2	or $r \ge 0$
				sc Allow B1 for $0 < r < 4$
(ii)	$\theta = 0$ at max	B1		or π
	$\theta = \frac{\pi}{2}$ at min	B1	2	Accept 90°; or $\theta = -\frac{\pi}{2}$ etc
(iii)		B1		One quadrant correct
(III)	$\theta = 0$	B1		Symmetry about $\theta = 0$
		B1	3	Symmetry about $\theta = \frac{\pi}{2}$
(b)(i)	[1]	M1		Translated 1 in x-direction M1, A1
(-,(-)	Translation through $\begin{bmatrix} 1\\0 \end{bmatrix}$	A1	2	,,,
				Moved/shifted one unit to right M1, A0
				Moved one unit M0
				Translated in y-direction M0
(ii)	$r^2 \cos^2 \theta - 2r \cos \theta + 1$	M1		or $x^2 - 2x + 1 + y^2 = 1$
	$+r^2\sin^2\theta = 1$	Al		$x^2 + y^2 = 2x$
	Use of $\cos^2 \theta + \sin^2 \theta = 1$	ml		$x^2 + y^2 = r^2, x = r\cos\theta$
	$\Rightarrow r^{2} = 2r\cos\theta \Rightarrow r = 2\cos\theta$	Al	4	ag
	$\Rightarrow r = 2r\cos\theta \Rightarrow r = 2\cos\theta$	AI	4	ag
(c)	$4\cos^2\theta = 2\cos\theta$	M1		
	$\cos \theta = 0$	B1		
	or $\cos\theta = \frac{1}{2}$			or $\theta = \frac{\pi}{3}$
	$\cos \theta = \frac{1}{2}$	A1		3
	Intersection at pole, or stating $r = 0$	B1		$\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ or $\begin{bmatrix} 0, -\frac{\pi}{2} \end{bmatrix}$
	Also at $\left[1, \frac{\pi}{3}\right]$ and $\left[1, \frac{-\pi}{3}\right]$	B1	5	May state $r = 1$, $\theta = \pm \frac{\pi}{3}$
				(but must have both points)
				B1 first correct point; B2 all three points
	Total		18	

Pure 3(B) June 2002

Pure 3(B) January 2003

Q	Solution	Marks	Total	Comments
8(a)	Max $r = 7$, $\theta = 0$ at max	B1, B1		
(i)				
	Min $r = 3$, $\theta = \pi$ at min	B1, B1	4	
(ii)		B1		One quadrant correct
()		B1		Symmetry about $\theta = 0$
		B1	3	Good graph
(b)	$r\cos\theta = x$	M 1		
	x = 3 is straight line	Al	2	
(-)(1)		M1		
(c)(i)	$2\cos^2\theta + 5\cos\theta - 3 = 0$	IVII		
	$(2\cos\theta - 1)(\cos\theta + 3) = 0$	m1		
	$aaa 0 \neq 2 \Rightarrow aaa 0 = 1$	Al	3	
	$\cos\theta \neq -3 \implies \cos\theta = \frac{1}{2}$	AI	3	
(ii)	$r=6$, $\theta=\frac{\pi}{3}$	B1, B1		
	2			
	$\theta = -\frac{\pi}{3}$	B1√	3	
	Total		15	
	Total		15	

Pure 3(B) June 2003

Question Number and part	Solution	Marks	Total	Comments
6(a)(i)	$\sin(-\theta) = -\sin\theta$	M1	1	Must be general angle
0(4)(1)	$f(-\theta) = 2(-\sin\theta)^2 = 2\sin^2\theta = f(\theta)$	Al	2	indit be general angle
(ii)	$\theta = \frac{\pi}{2}$ $\theta = -\frac{\pi}{2}$	B1		accept 90° or 1.57(0796rads)
	$\theta = -\frac{\pi}{2}$	B1	2	Or –1.57(0796rads) Must be radians for second mark
(iii)	Range $0 \le f(\theta) \le 2$	B2	2	B1 only for either "end" correct or < used or θ used instead of f(θ)
	$\bullet \theta = 0$	B1 B1√ B1√	3	One quadrant correct Symmetry about $\theta = 0$ Symmetry about $\theta = \frac{\pi}{2}$
(c)(i)	$\Theta = 0$	M1 A1	2	"loop" generally above initial line single "circle" drawn fairly accurately
(ii)	$y = r\sin\theta$ $r^2 = 2r\sin\theta$	B1 M1		Seen or used Or attempt to eliminate both <i>r</i> and θ
	$x^2 + y^2 = 2y$	Al	3	oe such as $\sqrt{x^2 + y^2} = \frac{2y}{\sqrt{x^2 + y^2}}$
				sc B3 for correct equation of circle with no working.
	Total	-	14	

Prepared by Toot Hill School Maths Dept April 2007

Pure 3(B) January 2004

Question	Solution	Marks	Total	Comments
number				
and part				
8(a)	$r_{\text{max}} = 2$ when $\theta = \frac{1}{4}\pi$ and $\theta = -\frac{3}{4}\pi$	B1 B1 B1	3	
(b)	$\sin 2\theta = -1 \implies 2\theta = \frac{3}{2}\pi, \dots$	M1 A1		
	giving $\theta = \frac{3}{4}\pi$, $\theta = -\frac{1}{4}\pi$	A1 A1	4	Penalise degrees max. once; ignore correct out-of-range answers
(c)	Use of $r = \sqrt{x^2 + y^2}$	B1		
	Use of either $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$	M1		
	$\sqrt{x^2 + y^2} = 1 + \frac{2xy}{x^2 + y^2}$	A1	3	Any correct form at earliest stage
	Total		10	

Pure 3(B) January 2005

Question	Solution	Marks	Total	Comments
Number and Part				
8(a)(i)	Translation (// x-axis), vector $\begin{bmatrix} 2\\ 0 \end{bmatrix}$	M1 A1	2	B1 for equivalent correct description without "translation"
(ii)	$(r\cos\theta - 2)^2 + (r\sin\theta)^2 = 4$ $r^2(\cos^2\theta + \sin^2\theta) - 4r\cos\theta + 4 = 4$ Use of $c^2 + s^2 = 1$	M1 A1		Backwards approach is fine
	$(r \neq 0) \Rightarrow r = 4 \cos \theta$	B1 A1	4	ag
(b)(i)	$r_{\max} = 8$, $r_{\min} = 0$	B1 B1	2	
(ii)		B1 B1 B1	3	Symmetry in $\theta = \frac{1}{2}\pi$ Symmetry in $\theta = 0$ All correct
(c)	Equating $8 \cos^2 \theta = 4 \cos \theta$ and solving $\theta = \frac{1}{3}\pi$ and $r = 2$	M1 A1 A1		
	2^{nd} point $\theta = -\frac{1}{3}\pi$, $r = 2$	A1√	4	Or ft $2\pi - (1^{\text{st}} \theta)$, same <i>r</i>
	Total		15	

Pure 3(B) June 2005

Q	Solution	Marks	Total	Comments
6(a)(i)	Maximum value of $r = 5$ when $\theta = \pi$	B1 B1		condone angles mod 2π
	Minimum value of $r = 1$ when $\theta = 0$	B1 B1	4	
(ii)	Symmetry about $\theta = 0$ Correct graph – approx 5: 1 ratio	B1 B1	2	
(b)(i)	$8c^2 + 2c - 3 = 0$			
	$\Rightarrow (2c-1)(4c+3) = 0$ $\cos \theta = \frac{1}{2}, \cos \theta = -\frac{3}{4}$	M1		Attempt to factorise or solve quad eqn
	$\cos\theta = \frac{1}{2}, \cos\theta = -\frac{3}{4}$	A1	2	
(ii)	Use of $r = 3 - 2\cos\theta$ to find r $\left[2, \frac{\pi}{3}\right], \left[2, -\frac{\pi}{3}\right], \left[\frac{9}{2}, \cos^{-1}(-0.75)\right]$	M1 A1√ A1√		or using $r = 8\cos^2 \theta$ one pair of matching r and θ ft second pair of matching r and θ ft
	$\left[\frac{9}{2}, -\cos^{-1}(-0.75)\right]$	A1	4	All 4 points correct
	Total		12	