Pure Core 1 Past Paper Questions Pack A: Mark Scheme

Taken from MAME

January 2001

Q	Solution	Marks	Total	Comments
1 (a)	0, -6	B1B1	2	
(b)	$(x-1)(x^2-3x-4)$ $(x-1)(x+1)(x-4)$	B1		for $x-1$ factor
	(x-1)(x+1)(x-4)	M1A1	3	allow separate factors $(x^2 - 1)(x - 4)$ SR1
	Total		5	
2 (a)	$(x-3)^2-2$	M1A1	2	$(x+3)^2 - 2 \text{ or } (x-3)^2 \pm a \text{ M1}$
(b)	c.v $3 \pm \sqrt{2}$ or $\frac{6 \pm \sqrt{8}}{2}$ $3 - \sqrt{2} < x < 3 + \sqrt{2}$, allow separately	M1A1 B1	3	$ \begin{cases} (M1A0 \text{ for one}) \\ \text{allow } 1.6, 4.4 \\ 1 < x < 7 \text{ SR } 0/3 \end{cases} $
	Total		5	

Q	Solution	Marks	Total	Comments
5 (a)	$(0 <) 2x < 5 \Rightarrow (0 <) x < 2.5$	B1	1	in effect, 5÷2
(b)	$V = x(5 - 2x)(8 - 2x)$ $= x(4x^2 - 26x + 40)$	M1 M1		expanding sensible quadratic
	$=4x^3 - 26x^2 + 40x$	A1	3	AG
(c)	$\frac{dV}{dx} = 12x^2 - 52x + 40$	M1A1		M1 for 2 correct
	$12x^{2} - 52x + 40 = 0$ $x = 1 \text{or } \frac{10}{3} \text{ false argument } M0$	M1A2	5	$\begin{cases} M1 \text{ for solving quadratic} \\ \text{allow A1 for } \frac{10}{3} \text{ only or } 1, -\frac{10}{3} \end{cases}$
(d)	18(cm ³)	B1	1	
	Total		10	

3 (a) (b)	$(x+2)^2 -9$ $(x+2)^2 > 9$	M1 A1	2	
(11)	$(x+2)^2 > 9$ or one c.v. of 1 or -5 seen x < -5, $x > 1$	M1 A1A1	3	M1A1 if <u>only</u> the wraparound is seen i.e. $-5 > x > 1$ s.r. B1 if one correct inequality, following wrong working
	Total		5	

4	8 + 4a + 2b + 4	M1		a.e.f.
	= 0	A1		
	-1 + a - b + 4 = 0	M1A1		
	a = -3, b = 0	A1A1	6	
	or s.r. maximum mark $\frac{5}{6}$:			
	(x)(x-2)(x+1)	M1		
	(x)(x-2)(x+1) (x-2)(x-2)(x+1)	A 1		
	Multiplying out	M1		
	a = -3, b = 0	A1A1		
	Total		6	

6 (a)	$V = x^2 h$	B1		
	$V = x^2 h$ $A = x^2 + 4xh$	M1A1	3	
(b)(i)	$v = x^2 \left(\frac{3000 - x^2}{4x} \right)$	M1		for elimination of h
	$=750x - \frac{1}{4}x^3$	A1	2	a.g.
(ii)	$750 - \frac{3}{4}x^2$ $= 0$	M1		differentiation with one term correct
		A1		
	$x = 10\sqrt{10}$ or $\sqrt{1000}$	A 1	3	allow $\pm \sqrt{1000}$
(iii)	Complete substitution of exact x	M1	2	
	$5000\sqrt{10}$	A1	2	must use exact method
	Total		10	

January 2002

3	$x^{2} + 2x(2 - x) = 3$ $\Rightarrow x^{2} - 4x + 3 = 0$	M1		for elimination of 1 variable
	$\Rightarrow x^2 - 4x + 3 = 0$	A1		quadratic equal to zero (3 terms)
	Solution of quadratic	M1		complete method factorising must be correct
	x = 3, y = -1	A1		Allow B1 for any pair (x, y) or x 's or y 's,
	x = 1, y = 1	A1	5	irrespective of working
	Allow if pairing unclear in final answer			trial and error: full marks if full solution obtained
	Total		5	

Q	Solution	Marks	Total	Comments
4 (a)	$\frac{dP}{dt} = -3t^2 + 114t + 117$	M1A1	2	M1 if 2 correct terms
(b)(i)	$3t^2 - 114t - 117 = 0$	M1		set $\frac{dP}{dt} = 0$ quadratic only.
	t = 39(or -1)	m1A1	3	allow answer only
(ii)	e.g. $\frac{dy}{dx}$ changes from $+ve$ to $-ve$	M1		allow sketch or values at T point
	Maximum	A1	2	S.R. B1 if not justified S.R. B1 if $\frac{d^2 P}{dt^2} = 114 - 6t$ only
(c)(i)	2009√	B1√	1	$\sqrt{\text{ on } t > 0 \text{ from (b)(i)}}$
(ii)	Extinction	B1	1	allow $P = 0$
				do not allow "minimum"
	Total		9	

Q	Solution	Marks	Total	Comments
		M1		allow if on diagram or if signs incorrect
	$\overrightarrow{PQ} = \begin{pmatrix} 5 \\ -5 \end{pmatrix}$			
	$PQ^2 = 5^2 + 5^2$	M1		
	$\sqrt{50} = 5\sqrt{2} \text{A.G.}$	A1	3	B.O.D. unless decimals seen
(b)	$PQ^{2} = 5^{2} + 5^{2}$ $\sqrt{50} = 5\sqrt{2} A.G.$ $\frac{dy}{dx} = 2x - 4$	M1A1		M1 if one term correct
	$\frac{dy}{dx} = 4$ at Q	M1		use of $x = 4$ in $\frac{dy}{dx}$
	$dx = 4 \text{ at } \mathcal{G}$			$\int_{0}^{\infty} dx$ [Allow use of $x = -1$ for M1A0]
				[Allow use of $x = -1$ for MTA0]
	y = 4x + C	A1		
	$6 = 4 \times 4 + C$ or $y - 6 = 4(x - 4)$	M1		for use of $(4,6)$ in their $y = mx + c$
	y = 4x - 10	A1	6	
				GRAPHICAL/NUMERICAL/FIRST PRINCIPLES
				full marks if obtain correct gradient otherwise M0
(c)	$\frac{x^3}{3} - 2x^2 + 6x$	M1A1		M1 for 2 terms
	$\left[\left(\frac{64}{3} - 32 + 24 \right) - \left(-\frac{1}{3} - 2 - 6 \right) \right]$	M1A1		M1 for 4 and -1, correct way round, "integrated expression"
	$\frac{65}{3}$ or 21.7	A1	5	S.R. $\frac{4}{5}$ for correct answer then adjusted
	3			in some way
				ALTERNATIVE
				$y_1 - y_2 = -x^2 + 3x + 4$
				$\int = -\frac{1}{3}x^3 + \frac{3}{2}x^2 + 4x(+C)$
				M1A1
				[Allow $y_2 - y_1$]
				$F(4) - F(-1) = 20\frac{5}{6}$
				M1A1
	Total		14	[4 out of 5 max]
	1 otai		14	

	Q	Solution	Marks	Total	Comments
1	(a)	f(1) = 0, f(-1) = -4	B1B1	2	
	(b)	Use of Factor Theorem	M1		
		3 linear factors found	A3, 2, 1	4	One mark for each correct factor. NMS but 3 factors correct ${}^{3}4$. SC all signs wrong, ie factors $x + 1$, $x - 2$, $x - 3$:
		Total		6	

3	Elimination of x or of y	M1				
	$2x^2 - x - 3 = 0$ or $4y^2 - 3y - 1 = 0$	A1		ie correctly simplified to 3 non-zero terms		
	Valid method for solving quadratic	m1		m0 if trivialised, eg no x term		
	Both roots correct	A1				
	Solutions $(-1, 1), (\frac{3}{2}, -\frac{1}{4})$	A1	5	Condone vagueness about pairing		
	NMS 0/5 if no elimination seen; 3/3 for correct solutions after correct quadratic found					
	Total		5			

Q	Solution	Marks	Total	Comments
5(a)(i)	Use of quadratic formula	M1		OE; must have numerical values
	$x = \frac{-8 \pm \sqrt{8}}{4}$	A1	2	or equivalent surd forms
(ii)	x < lower value or > higher value	M1		With c's values (must have two) M1 if c shows right idea (eg by sketch) M0 if using eg $ab > 0 \Rightarrow a > 0$ or $b > 0$
	Clear and correct solution set	A1F	2	A0 for writing $a > x > b$ (except as FW); ft wrong solutions of quadratic penalised in (i); condone eg ' $x < -2.71$ or $x > -1.29$ ', Condone \leq for $<$
(b)	Use of $(x+b)^2 = x^2 + 2bx + b^2$ A = 2 and $B = 2$	M1 A1		PI
	C = -1	A1	3	NMS 3/3, or 1/3 for 2, 4, -9 or 2, 2, 3
(c) (i)	Min value is –1	B1F	1	ft wrong value of C
(ii)	Min at x = -2	B1F	1	ft wrong value of B
	Total		9	

0	Solution	Marks	Total	Comments
		Maiks	Total	Comments
7 (a)	$\int y dx = 12x - 3\left(\frac{1}{3}x^3\right)(+c)$	M1A1		M1 if at least one term correct
	$\int_{0}^{2} y dx = 16$	A1	3	
(b)(i)	y' = -kxGradient at <i>P</i> is -12	M1 A1	2	where k is a positive constant
(ii)	Use of this gradient to find y_Q $y_Q = 24$	m1 A1F	2	eg by finding equation of tangent NMS 2/2; ft wrong (negative) gradient
(c)	Method 1 Area of \triangle $OPQ = 24$	A1F		dependent on previous m mark ft wrong value of y_Q
	Required area = $24 - 16 = 8$	A1F	2	dependent on all 3 method marks; ft wrong value in (a) or (b)(ii) giving positive answer
	Method 2 Required area			
	$= \int_{0}^{2} ((24 - 12x) - (12 - 3x^{2})) dx$ = 8	A1F A1		dependent on previous m mark ft wrong equation of <i>PQ</i>
	Total		9	

November 2002

	Q	Solution	Marks	Total	Comments
3	(a)	f(2) = 8 + 12 - 12 - 8 = 0	B1	1	Accept NMS
	(b)	x-2 (or $x+1$ or $x+4$) is a factor	B1	1	May appear in (a) or (c) but use of Factor Theorem must be implied
	(c)	$f(x) = (x-2)(x^2 + 5x + 4)$ = (x-2)(x+1)(x+4)	M1A1 m1A1	4	OE; M1 for 5x or 4 correct 2-mark penalty for reversal of signs NMS (or repeated use of Factor Theorem) 4/4 all correct, 1/4 for second factor found
		Total		6	

5 (a)	Method for solving quadratic	M1		
	$x = \frac{-32 \pm \sqrt{72}}{4}$	A1		OE
	$\dots = -8 \pm \frac{3}{2}\sqrt{2}$	B1F	3	Correct use of $\sqrt{72} = 6\sqrt{2}$ OE
(b)(i)	m = 8	B1		
	n = -9	B1F	2	ft error in finding m
(ii)	So minimum value is -9	B1F	1	ft wrong value for n
	Total		6	

Q	Solution	Marks	Total	Comments
7 (-)				
7 (a)	y-coordinate of B is $2^3 - 2 = 6$	B1		
	Gradient of AB is $\frac{6-0}{2-1}$	M1		ft
	Equation of AB is $y = 6(x-1)$	m1		OE
	ie $6x - y - 6 = 0$	A1F	4	OE but in required form; ft wrong <i>y</i> -coordinate for <i>B</i>
(b)	$\int y dx = \frac{1}{4} x^4 - \frac{1}{2} x^2 (+c)$	M1A1		M1 if at least one term correct
	Substitution of $x = 1$	m1		
	$\int_0^1 y \mathrm{d}x = -\frac{1}{4}$	A1F		PI, eg $\int_0^1 y dx = \frac{1}{4}$; ft one error in a
				coefficient
	So area is $\frac{1}{4}$	A1F	5	ft negative answer; allow 1/2 for answer
	7			$\frac{1}{4}$ not clearly justified
				eg " $-\frac{1}{4} = \frac{1}{4}$ " or using $\int_0^1 y dx$ without
				explanation
	Total		9	

8 (a)	$y' = 4x^3 - 24x^2 + 32x$	M1A2,1	3	M1 if at least one term correct; -1 EE
(b)	y' = 0 for x = 0	B1		Condone factors instead of values in (b)
	and when $x^2 - 6x + 8 = 0$	M1		OE method leading to 2 non-zero values
	ie for $x = 2, 4$	A2,1	4	-1 EE
				NMS 1/3 for $x = 2$ or $x = 4$, 2/3 for both, 4/4 for all three correct values
(c)	Values of y for $x < 2$, $x = 2$, $x > 2$	M1A1		or of y' for $x < 2$, $x > 2$
				or of y'' for $x = 2$
	Conclusion drawn	E1	3	AG
(d)	Arrival time is 8.24 am	B1B1	2	
	Total		12	

January 2003

3	(a)	$x(2x + 1) = 3 \text{ or } 2x + 1 = \frac{3}{x}$	M1		
		$2x^2 + x - 3 = 0$	A1	2	convincingly obtained (AG)
	(b)	Method for solving quadratic	M1		i.e. formula, factors or completing square
		Solutions $(1,3), \left(-\frac{3}{2},-2\right)$	A2,1	3	A1 for both x values or one pair correct
					NMS 2/3 for both <i>x</i> values correct, 3/3 all correct
		Total		5	

5	(a)	a = -3, b = 6	B1B1	2	
	(b)	Method for midpoint	M1		
		M is $\left(-\frac{3}{2},3\right)$	A1F	2	ft wrong values in (a); Allow NMS
	(c)	Grad of AB is 2	B1F		ft wrong values in (a); PI by next statement
		Grad of perp is $-\frac{1}{2}$	B1F		ft wrong grad for AB
		Line is $y = mx + c$ where $m = -\frac{1}{2}$ and	Ml		Allow c's value
		$c = \frac{9}{4}$	A1F	4	ft c's M and c's m; condone wrong form
		Total		8	

7 (a)(i)	$y'=1-8x^3$	M1A1	2	M1 if at least one term correct
(ii)	$SP \Rightarrow y' = 0$	M1		PI
	$x_P = \frac{1}{2}$ convincingly shown	A1	2	AG; Allow verification
(iii)	$y_P = \frac{3}{8}(=0.375)$	В1	1	
(b)(i)	$\int y \mathrm{d}x = \frac{1}{2}x^2 - \frac{2}{5}x^5(+c)$	M1A1	2	M1 if at least one term correct
(ii)	Substitution of $x = \frac{1}{2}$	m1		
	Area = $\frac{1}{8} - \frac{2}{160} (= 0.125 - 0.0125)$	A1		This mark awarded if at least one term correct
	$ = \frac{9}{80} (= 0.1125)$	A1	3	
	Total		10	

	Q	Solution	Marks	Total	Comments
8	(a)	Rationalising denominator	M1		
		Numerator becomes $2\sqrt{2} + 3$	m1A1		
		Denominator = 1, so answer is $2\sqrt{2} + 3$	A1F	4	ft one small error in numerator (ans in reqd form)
					$2\sqrt{2} + 3 \text{ NMS}$ 3/4
	(b)	LHS = $\sqrt{2}x - 2$ $\sqrt{2}x - x < 2\sqrt{2} + 2$	B1		Allow B1 for $\sqrt{2}x - \sqrt{4}$
		$\sqrt{2}x - x < 2\sqrt{2} + 2$	M1		Allow M1 even with decimals
					Allow equality here
		$x < \frac{2\sqrt{2} + 2}{\sqrt{2} - 1}$	A1F	3	or better; ft one error in LHS
		$\sqrt{2}-1$			Allow $x < \frac{2\sqrt{2} + 2}{\sqrt{2} - 1}$ even if not fully
					explained (after equations approach)
		Total		7	

2	(a)	$A = 3, \ B = -2$	B1B1	2	
	(b)	Method for solving quadratic	M1		
		$x = -3 \pm \sqrt{2} \text{ or } \frac{-6 \pm \sqrt{8}}{2}$	A2,1F	3	A1 if one root found or if small error made; ft wrong answer in (a)
					NB Follow through when $B > 0$: M1A1 for showing that there are no real roots, M1A0 for writing e.g. $x = -3 \pm \sqrt{-2}$
					NMS B2 for one exact root, B3 for both; B1 for AWRT -1.59, B1 for AWRT -4.41 (3sf needed)
		Total		5	

0	Caladian	Manda	Takal	C
Q	Solution	Marks	Total	Comments
4 (a)	Gradient is $\frac{3}{2}$	B1		PI
	Equation is $y = \frac{3}{2}x$	B1F	2	ft wrong gradient provided $c = 0$
(b)(i)	Gradient of given line is $-\frac{2}{3}$	B1		PI; or gradient of perp line is $-\frac{2}{3}$; allow AWRT -0.666 or -0.667
	Hence given line perpendicular to OA	E1	2	convincingly shown (AG)
(ii)	Attempt at midpoint of OA	M1		Allow 3/3 for other convincing method
	Midpoint is $\left(1, \frac{3}{2}\right)$	A1		
	This lies on the given line	E1	3	convincingly shown (AG)
	Total		7	

0	Solution	Marks	Total	Comments
Ų	Solution	Maiks	Total	Comments
6 (a)(i)	$\sqrt{3} = 3^{\frac{1}{2}}$	B1	1	
(ii)	$\frac{3^x}{\sqrt{3}} = 3^{x - \frac{1}{2}}$	B1F	1	ft wrong answer to (i)
(b)	Complete method for finding x	M1		
	$x = -\frac{1}{2}$	A2,1F	3	ft wrong answer to (a)(ii) A1 if one small error made No method or trial method: 1/3 for AWRT – 0.500 unless answer justified (verified)
	Total		5	

Q	Solution	Marks	Total	Comments
8 (a)	f(3) = -2, f(4) = 0	B1B1	2	
(b)	Awareness of factor theorem	M1		PI by answers involving 1, 2, 4
	f(x) = (x-1)(x-2)(x-4)	A1	2	M1A0 for $(x+1)(x+2)(x+4)$ or for two factors correct
(c)(i)	$y' = 3x^2 - 14x + 14$	В3	3	B1 for each term
(ii)	Gradient at $x = 3$ is -1	B1F		ft one wrong coefficient
	Function is decreasing	E1F	2	ft wrong (non-zero) value for gradient at $x = 3$
				Alternative methods: 2/2 for convincing argument based on SP at $x \approx 3.22$ or values $f(a), f(b)$ where $a \le 3 < b$
(iii)	$\int y dx = \frac{1}{4} x^4 - \frac{7}{3} x^3 + 7x^2 - 8x(+c)$	M1A2	3	M1 if at least one term correct; -1EE
(iv)	Substitution of $x = 1$ and/or $x = 2$	M1		in c's integral (not y or y')
	Both substitutions and subtraction	m1		Subtraction must be right way round
	$Area = \frac{5}{12}$	A1	3	allow AWRT 0.416 or 0.417
	Total		15	

November 2003

2	(a)	Method for solving quadratic	M1		Eg 3 numbers in correct formula with at most one error
		$x = \frac{12 \pm \sqrt{8}}{4}$	A2,1	3	OE; A1 if one small error made
	(b)	Discriminant $= 144 - 168 < 0$	M1A1	2	OE; eg completing the square
	(c)	$144 - 8p = 0 \Rightarrow p = 18$	M1A1	2	NMS 2/2; OE, eg correct factors found
		Total		7	

Q	Solution	Marks	Total	Comments
4 (a)	$A = \frac{1}{2}(2+t)(6-t)$	M1		
	$\cdots = 6 + 2t - \frac{1}{2}t^2$	A1	2	Convincingly shown (AG)
(b)(i)	A' = 2 - t	M1A1	2	M1 if at least one non-zero term correct
(ii)	= 0 when $t = 2$	A1	1	AG; allow verification here
(c)(i)	P(4,0), Q(0,4)	B1	1	
(ii)	Grad of $PQ = -1$	B1F	1	ft wrong coords for P , Q
(iii)	Eqn of line with correct grad	M1		Allow c's grad given in (ii)
	Eqn of PQ is $x + y = 4$	A1	2	OE
	Total		9	

Q	Solution	Marks	Total	Comments
7 (a)	At P,Q , $2x = -2x^2 + x + 6$ $2x^2 + x - 6 = 0$ (2x-3)(x+2) = 0	M1		
	$2x^2 + x - 6 = 0$	A1		
	(2x-3)(x+2) = 0	m1		OE, eg correct use of correct formula;
				condone verification of $x = \frac{3}{2}$
	So $x_P = \frac{3}{2}$ (AG) and $x_Q = -2$	A1	4	
	Area $T = \frac{1}{2} \left(\frac{3}{2} \right) (3) = \frac{9}{4}$	M1A1	2	OE, e.g. integration
(c)(i)	$\int dx = -\frac{2}{3}x^3 + \frac{1}{2}x^2 + 6x(+c)$	В3	3	B1 for each term
(ii)	$\intdx = -\frac{2}{3}x^3 + \frac{1}{2}x^2 + 6x(+c)$ $\int_0^{\frac{3}{2}} (-2x^2 + x + 6)dx = \frac{63}{8}$ So area of $R = \frac{63}{8} - \frac{9}{4} = \frac{45}{8}$	B1		No credit for $\int_{-2}^{\frac{3}{2}} (-2x^2x + 6) dx$
	So area of $R = \frac{63}{8} - \frac{9}{4} = \frac{45}{8}$	M1A1F	3	ft wrong values
	Alternative methods for (c) (ii):			
	Method 1: $\int_{0}^{\frac{3}{2}} (-2x^2 - x + 6) dx \frac{45}{8}$	M1A2,1		
	Method 2 $\int_{0}^{\frac{3}{2}} (2x^2 + x - 6) dx$	MIAO		Unless right answer legitimately obtained
	Total		12	

January 2004

3 (a)	f(2) = 0	B1	1	Allow NMS
(b)	x-2 is a factor	B1	1	or $x + 3$ if from Factor Theorem
(c)		M1A1		M1 if 6x or 9 correct
	$=(x-2)(x+3)^2$	m1A1	4	NMS 1/4 for 2 nd factor, 4/4 all correct
				If c divides by $x + 2$, give M1 if $2x$ or -9 appears
				If c writes $x + 2$ and $x - 3$ as factors, give B1
				If c's answer is $(x+2)(x-3)^2$, give B2
	Total		6	

Q	Solution	Marks	Total	Comments
5 (a)	Grad of L is negative	B1		Allow NMS
	Grad of L is $(\pm) \frac{2}{3}$	В1	2	PI; condone $(\pm) \frac{2}{3}x$; allow NMS
(b)	Perp grad is $\frac{3}{2}$	B1F	1	Condone $\frac{3}{2}$ x; ft wrong answer to (a)
(c)	Req'd line is $y - 1 = \frac{3}{2}(x - 4)$ ie $3x - 2y = 10$	M1 A1	2	OE; B1 for full verification Convincingly shown (AG)
(d)	Elimination of x or y	M1		
	Pt of int is (6, 4)	A2, 1	3	2/3 for non-algebraic method
(e)	Shortest length is $\sqrt{13}$	m1A1F	2	ft one error in (d); allow AWRT 3.61
	Total		10	

7 (a) (b)	m = 3, n = -8 Method for solving quadratic	B1B1 M1	2	
	$x = -3 \pm \sqrt{8} \text{ or } \frac{-6 \pm \sqrt{32}}{2}$	A1		
	$\dots = -3 \pm 2\sqrt{2}$	B1	3	This mark is for $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{32} = 4\sqrt{2}$
(c)	$-3 - 2\sqrt{2} < x < -3 + 2\sqrt{2}$	B1F	1	ft wrong answers or forms penalised in (b); allow $-5.83 < x < -0.17$; condone \leq for $<$
	Total		6	

Q	Solution	Marks	Total	Comments
8(a)(i)	$y'=3x^2-6x+3$	M1A1	2	M1 if at least one term correct
(ii)	Solving quadratic $y'=0$	m1		Allow verification here
	SP is (1,1)	A1A1	3	NMS $x = 1 B1$, $y = 1 B1$ provided y correct
(b)(i)	$\int y dx = \frac{1}{4}x^4 - x^3 + \frac{3}{2}x^2 \ (+c)$	B3,2,1	3	B1 for each term
(ii)	Substitution of $x = 3$	M1		In c's integral (not y or y');
				M0 for attempting $\int_{3}^{9} y dx$
	$\int_{0}^{3} y dx = \frac{81}{4} - 27 + \frac{27}{2} = \frac{27}{4}$	A1		
	ie half of $\frac{1}{2}$ (3 × 9)			OE, eg integration
	hence result	A1	3	Convincing shown (AG)
	Total		11	

Q	Solution	Marks	Total	Comments
1(a)	$x^2 + 2x - 3 = 0$	B1	1	convincingly shown (AG)
(b)	Solution of quadratic	M1		Two solutions needed
				(M1A0 for x = -1 or 3)
	Solutions are (1, 1), (-3, -7)	A2,1	3	A1 for both x values or one pair; NMS 1/3
	Total		4	

Q	Solution	Marks	Total	Comments
5(a)	$\left(\sqrt{3} - \sqrt{2}\right)\left(\sqrt{3} + \sqrt{2}\right) = 1$	В1	1	Condone answer 3 – 2
(b)(i)	Rationalising denominator Expanding numerator $k = 5 - 2\sqrt{6}$	M1 m1 A1	3	Method must be shown To give $m + n\sqrt{6}$, not necessarily simplified
(ii)	Rationalising denominator $1/k = 5 + 2\sqrt{6}$	M1 A1	2	using original k or answer to (i)
	Total		6	

	Total		10	
	y' > 0 for all x	A1	3	
	Completing square $y' > 0$ for all x	m1		or using discriminant
(ii)	y increasing if $y'>0$	M1		
(b)(i)	$y' = 3x^2 - 6x + 6$	M1A1	2	M1 if at least one term correct
(ii)	Substitution and subtraction Definite integral = 18	m1 A2, 1F	3	Subtraction must be the right way ft one wrong coefficient in (i); A1 if only one (perhaps repeated) error
6(a)(i)	$\int y \mathrm{d}x = \frac{1}{4}x^4 - x^3 + 3x^2(+c)$	M1A1	2	M1 if one term or all powers correct. Accept unsimplified

	Total		10	
	Area = 22.5	A2,1	4	A1 if at least relevant area correct
(d)	Complete method for area	M2		
(c)	D is (0, 10)	A1F	1	ft wrong equation for CD
(b)	Good attempt at equation of CD Gradient of CD correct Constant correct	M1 A1 A1F	3	Linear equation, with same grad as AB (attempted) NMS $2x + 3y = 30$; $3/3$ $2x + 3y = k$; $2/3$ $2x + 3y = $ (other); $0/3$ ft wrong grad: eqn satisfied by $(6,6)$
	<i>B</i> is (3, 3)	A1	2	
7(a)	At B , $2x + 3x = 15$	M1		OE elimination